

CSCE 5350.001

Fundamentals of Database Systems

Project Part 2

Naga Vara Pradeep Yendluri

11646461

nagavarapradeepyendluri@my.unt.edu

Project Description:

The Movie Producer Management System is an application that is being developed for

a movie production company like Universal Studios. The system is designed to store and

manage information about the company's movies, artists, songs, employees and various other

aspects of the movie production process. The system will store information about the producing

site locations, movie-script-inventory, sponsoring companies, employee data, and payroll. It

will also store information about the artists and the movies they have worked on, as well as the

various aspects of the movie production process, such as soundtracks, awards, and more.

We have Identified the following entities and relations for the movie producer management

system.

1. Movies: The entity 'Movies' provides information about the different movies produced

by the company. It has 5 attributes, including the movie id, movie title, release date,

duration and script inventory id. This entity is important for keeping track of the

different movies produced by the company and the information related to each movie.

2. Artists: The entity 'Artists' provides information about the actors involved in the

movies. It has 4 attributes, including the artist id, artist name, artist date of birth and

gender. This entity is important for maintaining the information about the actors, their

age and date of birth, which is required for casting actors for various roles.

3. Genre: The entity 'Genre' provides information about the genre to which the movie

belongs. It has 2 attributes, genre id, and genre name. This entity is important for

categorizing the movies into different genres, which helps in better management and

analysis of the movies.

4. Sponsoring Companies: The entity 'Sponsoring Companies' provides information

about the companies that sponsor the movies. It has 2 attributes, including company id

and company name. This entity is important for tracking the sponsorship deals and the

companies that sponsor the movies.

5. Site Locations: The entity 'Site Locations' provides information about the different

producing sites, including their addresses and buildings. It has 3 attributes, including

location id, name, and address. This entity is important for tracking the different

producing sites and their details, which is essential for managing the movie production

process.

6. Buildings: The entity 'Buildings' provides information about the buildings in each

producing site. It has 4 attributes, including Building id, name, location id and purpose.

This entity is important for tracking the different types of buildings present in the

producing sites, which is essential for managing the resources and maintenance of the

buildings.

7. Movie Script Inventory: The entity 'Movie Script Inventory' provides information

about the movie scripts. It has 2 attributes, including script inventory id and script

inventory name. This entity is important for tracking the different movie scripts and the

information related to each script.

8. Employees: The entity 'Employees' provides information about the employees of the

company. It has 4 attributes, including employe id, name, designation, and phone. This

entity is important for maintaining the information about the employees, their job title

and contact information, which is required for managing the human resources of the

company.

9. Payroll: The entity 'Payroll' provides information about employee payroll data. It has

4 attributes, including payroll id, salary, employee id and hours worked. This entity is

important for tracking the payroll information of the employees, which is essential for

managing the finances of the company.

10. Songs: The entity 'Songs' provides information about different soundtracks used in the

movies. It has 4 attributes, including song id, song name, movie id, and singer name.

This entity is important for tracking the different soundtracks used in the movies and

the information related to each soundtrack.

Binary Relations:

• One-to-Many relation:

1. Every Employee will have one payroll associated to them each month. So, the relation

between employee and payroll is one to many.

2. Each script inventory will have many movies associated with. Hence, the relation

between movie script inventory and movies will also be one to many.

3. Each movie can have multiple songs/soundtracks in it and inversely there can be

multiple songs in a movie. So, the relation between songs and movies is one to many.

4. Each site location can have multiple buildings in them, and inversely multiple buildings

can be located at a single location. So, the relation between these two entities will be

one-to-many relation.

• Many-to-Many relation:

1. Each movie can have many artists performing in it and inversely many actors can act

in many different movies. Hence, the relation between movies and artists will be many

to many.

2. Many Sponsoring companies can sponsor for many movies in this system. Inversely,

many movies can get sponsorship from different sponsoring companies. Hence, the

relation between these two entities is many to many relation.

3. Many movies can be shot at different locations and inversely many locations can

concurrently host shootings for many movies in different buildings so the relation

between these two entities will also be many to many relation.

4. Many movies can have many genres so the relation between these two entities will also

be many to many relation.

5. Many employees can manage many site locations so the relation between these two

entities will also be many to many relation.

6. Many artists gets paid by many sponsoring companies so the relation between these

two entities will also be many to many relation.

Assumptions:

1. Movies and Artists: It is assumed that each movie has one or more actors, and each

actor is associated with one or more movies.

2. Genre: It is assumed that each movie belongs to multiple genres like adventure, action,

drama, etc.

3. Sponsoring Companies: It is assumed that each movie is sponsored by one or more

companies and each company sponsors one or more movies.

4. Site Locations and Buildings: It is assumed that each producing site has one or more

buildings and each building is located at a single site.

5. Movie Script Inventory: It is assumed that each movie is associated with one unique

movie scripts and each script is associated with a single movie.

6. Employee: It is assumed that each employee of the company has a unique employee

ID, and each employee belongs to a single job title.

7. Payroll: It is assumed that each employee has payroll information, and each employee

ID is associated with a single payroll record.

8. Songs: It is assumed that each movie has one or more soundtracks, and each soundtrack

is associated with a single movie.

9. Movie title must be unique.

10. Ratings must be between 1 to 10 and no decimals values.

11. Employees get paid by weekly basis hence we used 40 hours constraint in the table.

12. Company name must be unique.

13. Phone number has 10 characters.

14. Employee will have unique phone number.

15. One employee can manage multiple locations. m-m

16. Duration of movie must be > 0 minutes.

17. Artist gender must be of F(female), M(male), T(transgender).

ER Diagram

ER Relations:

Relations transformed to schema.

Movie (movie_id, title, rating, date_of_release, duration, script_inventory_id)

Songs (song_id, song_name, singer_name, movie_id)

Genre (genre_id, genre_name)

TaggedWith (movie_id, genre_id)

SiteLocation (location_id, location_name, address)

ShotAt (location_id, movie_id)

Building (building_id, building_name, purpose, location_id)

PostProductionDoneIn (movie_id, building_id)

Employees (employee_id, employee_name, designation, phone_number)

Manages (employee_id, location_id)

Payroll (payroll_id, salary, employee_id, hours_worked)

SponsoringCompany (company_id, company_name)

getsPaidBy (artist_id, company_id)

Produces (company_id, movie_id)

Artist (artist_id, artist_name, date_of_birth, gender)

MovieScriptInventory (script_inventory_id, script_inventory_name)

ActsIn(movie_id, artist_id)

Tables:

MovieScriptInventory:

CREATE TABLE MovieScriptInventory (

 script_id INT PRIMARY KEY,

 script_name VARCHAR(255) NOT NULL);

OUTPUT:

Movie:

CREATE TABLE Movie (

 movie_id INT NOT NULL,

 title VARCHAR(255) NOT NULL UNIQUE,

 rating INT NOT NULL,

 date_of_release DATE NOT NULL,

 duration INT NOT NULL,

 script_inventory_id INT NOT NULL,

 PRIMARY KEY (movie_id),

 FOREIGN KEY (script_inventory_id) REFERENCES

MovieScriptInventory(script_inventory_id),

 CONSTRAINT rating_constraint_violated CHECK (rating > 0 and rating < 11),

 CONSTRAINT duration_constraint_violated CHECK (duration > 0));

OUTPUT:

Songs:

CREATE TABLE Songs (

 song_id INT NOT NULL,

 song_name VARCHAR(255) NOT NULL,

 singer_name VARCHAR(255) NOT NULL,

 movie_id INT NOT NULL,

 PRIMARY KEY (song_id),

 FOREIGN KEY (movie_id) REFERENCES Movie(movie_id)

);

OUTPUT:

Genre:

CREATE TABLE Genre (

 genre_id INT NOT NULL,

 genre_name VARCHAR(255) NOT NULL,

 PRIMARY KEY (genre_id)

);

OUTPUT:

Tagged With:

CREATE TABLE TaggedWith (

 movie_id INT NOT NULL,

 genre_id INT NOT NULL,

 PRIMARY KEY (movie_id, genre_id),

 FOREIGN KEY (movie_id) REFERENCES Movie(movie_id),

 FOREIGN KEY (genre_id) REFERENCES Genre(genre_id)

);

OUTPUT:

SiteLocation:

CREATE TABLE SiteLocation (

 location_id INT NOT NULL,

 location_name VARCHAR(255) NOT NULL,

 address VARCHAR(255) NOT NULL,

 PRIMARY KEY (location_id)

);

OUTPUT:

Building:

CREATE TABLE Building (

 building_id INT NOT NULL,

 building_name VARCHAR(255) NOT NULL,

 purpose VARCHAR(20) NOT NULL,

 location_id INT NOT NULL,

 PRIMARY KEY (building_id),

 FOREIGN KEY (location_id) REFERENCES SiteLocation(location_id),

 CONSTRAINT purpose_constraint_violated CHECK (purpose IN ('production', 'post-

production', 'office', 'studio', 'storage', 'visual effects', 'color grading', 'sound design',

'mixing')));

OUTPUT:

ShotAt:

CREATE TABLE ShotAt (

 location_id INT NOT NULL,

 movie_id INT NOT NULL,

 PRIMARY KEY (location_id, movie_id),

 FOREIGN KEY (location_id) REFERENCES SiteLocation(location_id),

 FOREIGN KEY (movie_id) REFERENCES Movie(movie_id)

);

OUTPUT:

PostProductionDoneIn:

CREATE TABLE PostProductionDoneIn (

 movie_id INT NOT NULL,

 building_id INT NOT NULL,

 PRIMARY KEY (movie_id, building_id),

 FOREIGN KEY (movie_id) REFERENCES Movie(movie_id),

 FOREIGN KEY (building_id) REFERENCES Building(building_id)

);

OUTPUT:

Employees:

CREATE TABLE Employees (

 employee_id INT NOT NULL,

 employee_name VARCHAR(255) NOT NULL,

 designation VARCHAR(255) NOT NULL,

 phone_number VARCHAR(10) NOT NULL UNIQUE,

 PRIMARY KEY (employee_id),

 CONSTRAINT designatoin_constraint_violated CHECK (

 designation IN ('choreographers', 'security’,'sound engineer', 'makeup artist', 'electrician',

'janitor','manager')));

OUTPUT:

Payroll:

CREATE TABLE Payroll (

 payroll_id INT NOT NULL,

 salary FLOAT NOT NULL,

 employee_id INT NOT NULL,

 hours_worked FLOAT NOT NULL,

 PRIMARY KEY (payroll_id),

 FOREIGN KEY (employee_id) REFERENCES Employees(employee_id),

 CONSTRAINT salary_constraint_violated CHECK (salary > 0),

 CONSTRAINT hours_constraint_violated CHECK (hours_worked > 0 and hours_worked

<= 40)

);

OUTPUT:

SponsoringCompany:

CREATE TABLE SponsoringCompany (

 company_id INT NOT NULL,

 company_name VARCHAR(255) NOT NULL UNIQUE,

 PRIMARY KEY (company_id)

);

OUTPUT:

Manages:

CREATE TABLE Manages (

 employee_id INT NOT NULL,

 location_id INT NOT NULL,

 PRIMARY KEY (employee_id, location_id),

 FOREIGN KEY (employee_id) REFERENCES Employees(employee_id),

 FOREIGN KEY (location_id) REFERENCES SiteLocation(location_id)

);

OUTPUT:

Artist:

CREATE TABLE Artist (

 artist_id INT PRIMARY KEY,

 artist_name VARCHAR(255) NOT NULL,

 date_of_birth DATE NOT NULL,

 gender VARCHAR(1) NOT NULL,

 CONSTRAINT gender_constraint_violated CHECK (gender in ('M', 'F', 'T'))

);

OUTPUT:

GetsPaidBy:

CREATE TABLE getsPaidBy (

 artist_id INT NOT NULL,

 company_id INT NOT NULL,

 PRIMARY KEY (artist_id, company_id),

 FOREIGN KEY (artist_id) REFERENCES Artist(artist_id),

 FOREIGN KEY (company_id) REFERENCES SponsoringCompany(company_id)

);

OUTPUT:

Produces:

CREATE TABLE Produces (

 company_id INT NOT NULL,

 movie_id INT NOT NULL,

 PRIMARY KEY (company_id, movie_id),

 FOREIGN KEY (company_id) REFERENCES SponsoringCompany(company_id),

 FOREIGN KEY (movie_id) REFERENCES Movie(movie_id)

);

OUTPUT:

ActsIn:

CREATE TABLE ActsIn (

 movie_id INT NOT NULL,

 artist_id INT NOT NULL,

 PRIMARY KEY (movie_id, artist_id),

 FOREIGN KEY (movie_id) REFERENCES Movie(movie_id),

 FOREIGN KEY (artist_id) REFERENCES Artist(artist_id)

);

OUTPUT:

Individual Contribution:

Here I have created the tables Buildings and Movie-Script-Inventory, Included the foreign

key(location_id), primary key(building_id), check(purpose), and NotNull constraints. I have

inserted 20 tuples into the buildings tables ans also 10 tuples into movie_script_inventory

table.

Obtained the tables according to inserted values in both tables.

