
CSCE 5430.003

Sahi Software

Group 11- Project 3 Testing Report

Overview

Sahi is a software testing tool that provides a range of features to support testing.

General Features:

• Sahi has Simple & Powerful APIs to easily identify elements on DOM, perform mouse,

keyboard, and touch actions seamlessly.

• Sahi embeds automatic waits and eliminates wait for statements and can navigate

inconsistent page loads.

• Sahi Object Spy and Recorder to identify elements across devices and software. It can

also work on applications that generate dynamic IDs for elements.

• Sahi implements Business friendly frameworks and uses inbuilt Business Driven Test

Automation to let business analysts and non-technical professionals contribute towards

test cases.

• Sahi employs automatic logging while automating applications that contains the

complete information about the run. This helps testers identify the exact line where

script is failing. All logs are stored in database.

• Sahi can run thousands of scripts that are packed into a suite on a single machine in

parallel mode or can be distributed across machines.

Some of the notable features include:

• Record and Playback: Sahi Pro allows testers to record their interactions with the

application and play them back to create automation scripts.

• Multi-Browser Support: Sahi Pro supports multiple browsers, including Chrome,

Firefox, Safari, and Internet Explorer.

• Parallel Execution: Sahi Pro allows tests to be run in parallel across multiple machines,

reducing the time required for testing.

• Script less Automation: Sahi Pro supports script less automation, allowing testers to

create automation scripts without any programming knowledge.

Roles and Input Combinations

• Sahi is suitable for use by a range of stakeholders involved in software testing, including

developers, testers, and QA engineers.

• Sahi uses control + hover combination to identify elements in DOM. Uses Sahi Script

to store the user events and is an extension of JavaScript, capable of interacting with

browser efficiently and perform reads on file system, access database and can call Java

etc.,

• Sahi Pro offers a variety of ways to identify web elements on a page, including through

traditional methods such as ID, name, and CSS selectors, as well as advanced

techniques like relation APIs (such as leftOf, under ,near, in, and rightOf) that allow

testers to identify elements with respect to each other.

• Sahi is Browser and Operating System independent in most cases. Javascript is injected

into webpages using proxy. In 95% of the test cases, this will work. Sahi falls back to

native events, when Javascript events may not work. These require focus on test

window and prevents parallel testing.

• Sahi can be used to test Web, Mobile, Desktop and SAP applications. It is used in

automating test cases.

Sahi Economics

Sahi started as Open-Source project in 2005 with focus on automation of emerging web 2.0

technologies. Sahi evolved into Sahi Pro that handles automation on modern web browsers,

mobiles, and desktop applications.

Sahi Pro has 4 pricing plans available for customers:

• Sahi Pro for Web

o Works across browsers and operating systems

• Sahi Pro for Desktop

o Works for windows desktop applications (WPF, .NET, etc.,)

o Java based applications.

• Sahi Pro for Mobile

o Mobile native & hybrid applications in iOS and Android

• Sahi Pro for SAP

o SAP GUI for windows

All plans support Database, File system, REST/Web services. Each plan has user / concurrent

licenses available. Sahi Pro is used by over 1000 companies globally, including Fortune 500

companies, government organizations, and startups. Some of the notable users of Sahi Pro

include Accenture, Cognizant, IBM, Infosys, and Wipro. Sahi Pro offers 30 days free trial. Sahi

reviews and testimonials are strong according to the official website. Product selling point is

the Record and playback tool functionality which works across all major browsers regardless

of their versions.

History

Sahi is an open-source test automation tool for web applications. It was initially created in

2005 with a specific focus on the automation of emerging web 2.0 technologies aimed at

testers. Over the years, the tool has undergone significant development, and Sahi Pro is now

an enterprise-grade test automation platform used by over 1000 companies worldwide.

Testing Interface

The Sahi Pro user interface is designed to be simple and intuitive. The testing interface

consists of several components, including the Sahi Dashboard, Test Suite Editor, Test Runner,

and Test Logs.

Sahi Dashboard: Sahi Dashboard consists of available browsers on

the system and include slinks to configure, Scripts, script editor,

SSL, Docs, Logs, Bin

Configure: Configure window contains Sahi Pro configurations

like browser types, Access Control, URL history. Each

configuration details are present at the top of the input window.

User can click save to save the changed configuration.

Scripts: clicking on scripts will launch file explorer on windows to show the recorded scripts

stored in .sah format.

User can review the recorded steps using a text editor like Visual Studio Code

Script Editor: Clicking on Editor opens web browser and localhost:9999 is opened. Script

editor contains file navigator, edit window, action buttons at the top to work on Sahi Scripts.

Users can segregate script suite, playback written script, and debug sah script.

Docs opens Sahi Documentation.

Logs list all the runs completed and shows each action run time in milliseconds.

Enabling Traffic logs lists all the sites visited during the automation process.

Users can use Configure License button to add license and reset product keys.

Clicking browser name will open the Sahi Start window in the selected browser. User can now

open Sahi Controller to start recording the automation steps using Alt key + Double click on

page.

Sahi Controller can be used in two modes, 1) Sahi and 2) Java. In Sahi mode Controller contains

Record, Playback, Clipboard, and Info tabs used to automate. User can click on red button at

top to start automation. Recorded steps are show in Evaluate expression window. User can

again click on red button to stop the recording. Clicking the settings icon shows the Script

Directory, Script Name, AR file to save the recorded steps to a .sah file.

Automation using Sahi:

Let us start by recording and playing back a simple script. Sahi Pro is not just a record and

playback tool, recording is a steppingstone to creating automation scripts. User can start

application by clicking the application shortcut on desktop. Let's record our first script. Enter

a script name to save the recording. And click record button.

• Ener a start URL: http://sahitest.com/demo/training to open Sahi provided demo

application to test.

• Click on Go button to start recording steps in application.

• User can see the navigateTo expression being recorded onto script.

• When user types in username, the event is recorded.

• All the steps are autosaved to the file.

• User now clicks on login button, to record the login action.

http://sahitest.com/demo/training

Now we add books quantity to cart.

All the actions are recorded in Recorded steps view.

After Add button is clicked, books are added to the Cart.

In this test case we verify that the Grand Total is correct, for the books quantity we added to

cart. We identify the total element and create an assertion for it.

To do that we need to follow the step shown in the controller.

Press Control key and hover mouse over total element.

Users can now click on the Assert button to get different assert suggestions that can be done

on the selected element.

Generated assert statements check if the element is existing in DOM, visible to user and

verifies if it is equal to 1400 value. User can verify the assertions by clicking the arrow button

below the Evaluate expression tab.

Changing 1400 value to 1450 and then evaluating the asserts will result in test failure.

When we are good with the assert statements, clicking on Append button appends the

generated asserts to the script.

Actions that we perform on the browser are automatically recorded. Actions that we perform

on the Sahi Controller, need to be appended to the script manually.

Let’s logout, examine the recorded script and run the automation from start.

Clicking red button will stop the recording and save all recorded steps to the .sah file

provided at the start of recording.

Click on Editor to open Sahi Scripts Editor. This opens browser and reaches localhost:9999

website to open editor hosted locally by Sahi.

User can see the recorded steps while automating web application. All steps are recorded in

JavaScript statements. Main advantage is user does not have to deal with xpaths or CSS

selectors to identify an element on DOM. Wait statements are also taken care implicitly by

Sahi.

Let’s playback the script that we just recorded. Open Sahi Controller, and go to Playback tab.

Clicking Play button starts the script and all Statements executed are shown in Statements

window below.

User can use Pause button to stop the script execution.

Step button is used to run the script step by step.

Logging in Sahi

User can go through the logs using Logs link in Controller window.

Logs contains suite runs, Average Time Taken By Browsers graph, Success Percentage By

Different Browsers pie chart and all the Playbacks conducted.

User can go through the Sahi reports to know more about the execution process, the time

taken for each action to run.

Let’s see a failure test case in the script. Changing quantity of book 3 in the cart will give us a

different total. When the grand total is not equal to 1400, Sahi logs an error in the test case.

User can playback the script from Sahi Editor without reaching Controller. Select the script

file, browser and start URL and click on Run button to start the playback.

Let’s see a failure test case in the script. Changing quantity of book 3 in the cart will give us a

different total. When the grand total is not equal to 1400, Sahi logs an error in the test case.

User can playback the script from Sahi Editor without reaching Controller.

Before execution of any step, Sahi waits for any Ajax activity, network activity to subside.

If a step seems to be failing, Sahi waits for 2 seconds and tries to re-execute that step. It will

do this 5 times, between the retries, if the system recovers, then Sahi will execute that step,

else it’ll mark the step as a failure.

Let’s go through the logs, we see that script itself is in red.

Opening the script, the assert step is marked in red and shows the expected and actual values

mismatch. Opening onScritpFailure step shows the screenshot when the assert statement

failure happened during test run.

Library Functions

The steps that we see in the Sahi Script are low level instructions to the computer to perform

actions on a browser.

The language of the business is much more in human speaking terms like – login to the

system, add books quantities to the cart, check the total amount, and logout from the system.

So, we need to create Business Level Abstractions out of the steps that we recorded.

We create Business Level Abstractions using Functions in Sahi.

To create a function, we select steps that pertain to a logical business step and click on Create

Function button, provide a function name and click on continue.

Sahi creates a function and extracts possible parameters from the recorded steps and takes

them as arguments to the function.

In the recorded steps place, it will call the created function with the values from the steps.

We do similar procedure for remaining steps, combine the quantity adding steps to a single

function.

To reuse the functions generated, we place them in a separate .sah script file.

Press Control and click on the function to open Context panel.

Select the library file from File Path where the function was defined and implemented. Click

on Include button to add import statement to the current script.

Playback the script.

Let’s look at the logs for the execution completed in Sahi Logs window.

Each function is listed in log and time for execution is listed after each step.

Let’s change the script a little to raise an error in grand total assertion, and see the logs.

Grouping as functions lets us detect the code where the assertion failed. Screenshot is also

provided in logs for the failure occurred.

Scenarios in Sahi

Sahi Scripts are written in JavaScript language.

Testers are present where they understand the business functionality of the application, but do

not necessarily understand the syntax and semantics of Sahi Script.

To help them participate in the automation process, we have an alternative way of defining

our test cases and scenarios. We do that using a scenario file.

Click on New button and select Scenario button.

Click on Save button and save the file.

Give a name in the test case column.

Add a description to the test case in Argument 1 column.

User can use different functions available in cart_library file by including in the current file.

When user starts to type the function name, Sahi shows the available functions.

Ctrl+click on the function to know more details about it

Select Include button to include cart_library.sah in the current scenario file.

Now user can enter the data that is needed for login to happen i.e., username and password in

Argument 1 and Argument 2 columns.

User can pass the parameters values in Function Details window.

Let’s run the script.

Opening logs

Clicking the step name shows the function called and the code executed.

Data Driven Suites in Sahi

Let’s run our scripts in batches using Sahi Parallel playback.

To execute multiple scripts in a batch, we need to create a suite file.

We create a suite file by first choosing the scripts that we want to execute.

Now click on Create Suite → Data Driven Suite

The above step creates a suite file. Save the file.

Let’s playback the suite using ‘Playback’ button.

Playback happens parallelly opening 2 edge browsers.

Logs show the graph showing the scripts and their run time. User can see the time taken for

running the scripts. Clicking on the test link, Sahi opens detailed report of the execution.

Data Driven Suites Logs Detailed View

BDTA – Business-Driven Test Automation

Business-Driven Test Automation (BDTA) allows test automation to begin much earlier in

the project lifecycle - right at the feature conceptualization stage. The application under test

need not be ready to begin BDTA. With BDTA, prior to the readiness of your feature or

application, we can:

1. Specify the desired application flow using straightforward language, employing key

words for various actions (e.g., login, add books, etc.).

2. Incorporate optional parameters into different steps based on specific testing

requirements, allowing for future adjustments or additions when the application is

fully developed (e.g., login | username: test | password: |).

3. Implement data-driven testing for scenarios that involve extensive data manipulation,

enabling the creation and population of relevant data input files.

4. Organize our tests and scenarios into suites, ensuring a structured and systematic

approach to test automation management.

5. Utilize tags to logically separate tests and enhance control over their execution,

enabling better test management and organization.

6. Seek verification and validation of our test automation efforts by involving peers and

managers to review and provide feedback.

7. Version control your test automation artifacts by checking them into a designated

repository, ensuring proper tracking and management of changes over time.

BDTA Implementation using Sahi:

let us imagine that we are going to work on a simple shopping application wherein the user

can purchase books and the use cases to add books to their cart and verify the cart total

amount now let us see how we can implement it using business driven test automation.

Open Sahi Pro Editor. We first create a new scenario file. Our first use case is login we write

that in Key Word column, a login will need a username and a password typically so we can

add that data as a parameter name:value in Argument 1 & argument 2 columns.Next step is to

add books, we do not yet know what books we will be adding so we can leave parameters

empty.

Save the file.

Now we will begin implementing the key words listed in the above file.

Right click on the test case name and select ‘Run/Record’. Enter start URL and click

Run/Record.

Now about run record this feature runs the selective test case with the intent of recording any

missing or non-implemented keywords or functions as you begin it looks in the entire

database of our Sahi scripts looks for a function with the keyword name and if not found

prompts you to record it by opening the Sahi pro controller.

After login is done, select red button to stop recording.

Sahi opens Create Function tab to tell us the parameters used. We can select the additional

parameters if the required attribute is not default selected. The default selection is done when

the parameter value in Sahi scenario file matches the input value used by the user.

Click on save to save the function.

Now if the next step in the scenario is already implemented, Sahi continues the playback, else

it will prompt to record the function.

Now click on stop record button to see the recorded steps in the function.

Now Sahi will prompt us to record Verify Total Amount function.

c

Hover on total amount element

And add assert statements.

Append the assertions using Append button to the current function. Stop the recording.

Add Total to function parameters and save the function.

Sahi will prompt us to record Logout functionality in User Logout function.

c

Stop the recording and save the function.

This will close the Sahi controller and goes back to editor.

We can ctrl+click on ShoppingCartScript.sah to see the script file and implemented functions.

User can now run the playback using Playback functionality.

Seeing logs will report all the steps executed.

Data Drive Test Cases in Sahi

We take the scenario we implemented further by data driving our tests. Testers often need to

keep the data separate from their test cases, there could be two reasons, firstly we may need

to access the same data for multiple test cases and secondly a test case or some of its steps

may need to be repeated with multiple sets of data. So, we need a framework to enable a test

case to be run repeatedly with multiple sets of data. Let’s data drive the login scenario using

different data.

Right click on the key word and select Data Drive.

We’ll get a pop up to enter data file name and label.

Click Save.

Let’s see data drive for multiple rows. Selecting Add Programming Books and Verify Total

Amount steps. Right click and select data drive.

Click Save button.

Now we can see that both steps are wrapped in [Repeat] [End] loop.

ShoppingCartData file can be seen by clicking ctrl+file name in the current file.

Now let’s add some more data to BooksQuantities to run the test multiple times.

Let’s run the test case. Right click on the test case name and select Run/record.

In the Run/Record dialog select Run

We can notice that multiple times books are added according to the data we provided in the

data file.

Let’s look at the logs:

Data driven steps are shown with yellow heading table and data is listed in the table below.

Clicking on data reveals the functions called using the data.

Editing and Maintaining Test Scripts

When a change happens in business use case or business scenarios, tester can add new

requirements to the existing test case without disrupting other steps. In our above test case,

let’s say we must clear cart before logging out. User can do this step easily by adding step to

the file by right clicking and clicking Insert row above option.

Let’s add function Clear to clear the cart. User can select run/record option to record the

mentioned unimplemented test step.

Sahi runs the implemented functions. If it encounters any function that is not yet recorded,

it’ll open Controller to record the function.

We click on clear button to add it to steps list, next we verify if the form cleared or not using

control + hover on any of the quantity input fields. And then use assert button to add an

assertion to the script.

Sahi goes through the clear step and will logout on cart application and stops.

In logs:

Sahi Accessor Repository

To enhance script manageability and facilitate centralized editing, storage, and management

of accessors, we aim to segregate accessors from script file code. Sahi’s accessor repository

functionality comes in handy here which allows us to create accessor repositories

automatically either during the recording or thereafter using a single click.

Going to our functions library file, click on Create AR button in navigation bar.

Changes in Implementation of Sahi Script

Let’s say user want to change the accessor element for a particular element. To update the

accessor, first method is to open the ar file and change the accessor(only change if value is

known), second method is to put a break point at the line of element in sahi script and run the

script in debug mode. During the run, script execution is stopped when break point is

encountered. User can then change the element’s accessor and the use Save AR button to save

the AR to file.

2nd method:

Got to Record tab, and verify AR file path, enable AR repository checkmark, ctrol+hover on

the required accessor. It’s AR key and accessor will populate.

Select appropriate accessor and click on Save AR button.

Click ok and go to Playback tab to stop the run.

User can also change the key to match the new accessor of the element.

Go to the script file and Ctrol+click on the key, it opens context menu.

User can see the name of the AR file, key and value. It shows option to edit the key.

Click on Replace button. And click ok.

Updated key

Updated key in ar file.

Sahi Testing Methods

Static Testing: Sahi is mainly used for automating applications. It also provides static testing

to review source code of web applications.

Dynamic Testing: Dynamic testing is a technique that involves executing the software and

observing its behaviour, often with the aim of identifying bugs or other issues.

Sahi Pro offers a wide range of features for dynamic testing of web applications. These

include:

 Recording and playback of test scripts: Sahi Pro allows users to record their interactions

with a web application and play them back as test scripts, making it easy to automate

repetitive testing tasks.

 Cross-browser testing: Sahi Pro supports testing across a wide range of web browsers,

allowing users to ensure that their applications function correctly across multiple platforms.

 Data-driven testing: Sahi Pro supports data-driven testing, allowing users to test their

application with different input data sets, to ensure that it functions correctly under different

conditions.

 Test reporting and analysis: Sahi Pro provides detailed reports and analysis of test results,

allowing users to identify issues and track progress over time.

Black-box Testing: Black-box testing is a testing technique that focuses on the external

behaviour of the software being tested, without looking at the internal workings of the code.

In Sahi Pro, black-box testing can be performed by designing and executing test cases that

focus on the functionality and user interface of the web application being tested.

Sahi Pro’s record-and-playback feature, which allows users to record their interactions with

the web application being tested and play them back as test scripts. This makes it easy to

design and execute tests that focus on the user interface and functionality of the application.

Testing Levels

In Sahi Pro, unit tests can be written as functions that start with "test", such as

"testUserNameMax50Characters" and "testPasswordAlphaNumeric".

For example, the "testPasswordAlphaNumeric" function could perform the following steps:

1. Generate a random password string of a length greater than 6.

2. Generate each character in the password string as a random alphanumeric character.

3. Verify that the operation of setting the password is allowed.

It is recommended to write comprehensive unit test cases and organize them in a single script

for efficient testing.

To execute the tests, you can use the "_runUnitTests()" function. Running this function with

no parameters will execute all tests. Alternatively, you can pass an array of specific test cases

to run only those tests. For instance, "_runUnitTests(["testUserNameMax50Characters",

"testPasswordAlphaNumeric"])" will execute only the "testUserNameMax50Characters" and

"testPasswordAlphaNumeric" test cases.

Operational Acceptance Testing can be done by running all the test cases in Sahi Pro using

parallel test case execution. This testing verifies that a software application is ready to be

deployed and used in a production environment.

Create test scripts: Create test scripts for each test case using Sahi Pro. These test scripts

should include all the necessary actions and verifications required to validate the functionality

of the application.

Execute the test scripts: Run the test scripts on the production-like environment. Ensure that

the test environment is isolated from the actual production environment to avoid any

unintended consequences.

Analyse the results: Analyse the test results to identify any defects or issues that need to be

addressed before the application is deployed in the production environment.

Iterate and refine: If any defects or issues are identified, iterate, and refine the test cases and

scripts until all issues are resolved.

Automatic correction and fix

Autoheal is a feature in Sahi Pro that enables automatic healing and recovery of failing

scripts in web automation. It uses data from previous runs to identify alternate solutions when

an element is not found, reducing failures and the need for manual intervention. Autoheal is

only available for web automation in Sahi Pro.

Testing Types

Installation testing involves verifying that the software application can be installed

successfully on different environments and configurations. Here are the steps to perform

installation testing using SahiPro.

Compatibility testing involves verifying that the software application works correctly on

different hardware, software, and network configurations.

Regression testing is a type of testing that is performed to ensure that changes made to the

software application do not negatively impact existing functionality. In Sahi Pro, regression

testing can be performed by re-executing existing test cases after making changes to the

application and verifying that all existing functionality is still working as intended.

Steps to perform regression testing using Sahi Pro:

 Identify the test cases: Identify the test cases that need to be re-executed as part of

regression testing. These test cases should cover all the critical functionality of the

application.

 Create test scripts: Create test scripts for each identified test case using Sahi Pro. These test

scripts should include all the necessary actions and verifications required to validate the

functionality and performance of the application.

 Execute the test scripts: Run the test scripts on the updated application and verify that all

existing functionality is still working as intended.

 Analyse the results: Analyse the test results to identify any defects or issues that need to be

addressed before the updated application is deployed in the production environment.

 Iterate and refine: If any defects or issues are identified, iterate, and refine the test cases

and scripts until all issues are resolved.

Continuous testing is a software testing approach that involves automated testing throughout

the software development lifecycle, from code changes to production deployment.

Continuous testing ensures that issues are caught early in the development cycle, reducing the

cost and effort of fixing defects later. In Sahi Pro, continuous testing can be achieved using

the following steps:

 Test automation: Write and automate tests using Sahi Pro for each new feature or change

made to the application.

 Continuous integration: Integrate automated tests into a continuous integration (CI)

pipeline, such as Jenkins, Bamboo, or Travis CI, so that tests are run automatically after each

code change.

 Test reporting and analysis: Use Sahi Pro's test reporting and analysis features to generate

test reports and identify defects and performance issues.

 Test environment management: Manage test environments using tools like Docker, which

provides a consistent and isolated environment for each test run

 Collaborative testing: Collaborate with developers, testers, and other stakeholders to

continuously improve the testing process and ensure that tests are up-to-date and relevant.

Destructive testing is a software testing technique that involves intentionally causing the

software to fail to validate its robustness and resilience. In Sahi Pro, destructive testing can be

performed using a variety of techniques, including:

 Fuzz testing: Fuzz testing involves sending random and invalid input to the software to see

how it handles unexpected input. This can help to identify potential security vulnerabilities,

memory leaks, and other issues that could cause the software to crash or behave

unexpectedly.

 Stress testing: Stress testing involves putting the software under heavy load to see how it

performs under extreme conditions. This can help to identify performance bottlenecks,

memory leaks, and other issues that could cause the software to fail or become unresponsive.

 Error injection: Error injection involves intentionally introducing errors, faults, or failures

into the software to see how it responds. This can help to identify potential issues with error

handling, recovery, and fault tolerance.

 Boundary testing: Boundary testing involves testing the software at the limits of its input

range, such as maximum and minimum values. This can help to identify potential issues with

input validation and boundary checking.

Software performance testing is the process of testing software applications to measure

their performance in terms of response time, throughput, scalability, and resource utilization

under various workloads.

Security testing is the process of identifying vulnerabilities and weaknesses in a web

application's security and ensuring that it can withstand malicious attacks.

Here are some tests we can perform security testing in Sahi Pro:

1. Authentication and Authorization Testing: Test the web application's authentication

and authorization mechanisms by attempting to login with incorrect credentials,

attempting to access pages or resources that require authorization, etc.

2. Injection Testing: Test the web application for SQL injection, XSS injection,

command injection, etc. by injecting malicious input and observing the application's

response.

3. Session Management Testing: Test the web application's session management

mechanisms by attempting to steal another user's session, forcing the application to

create a new session, etc.

4. Cross-site Scripting (XSS) Testing: Test the web application for XSS vulnerabilities

by injecting scripts that can be executed by the browser, such as JavaScript or HTML.

5. Cross-site Request Forgery (CSRF) Testing: Test the web application for CSRF

vulnerabilities by attempting to make unauthorized requests on behalf of the user,

such as changing the user's password or transferring money.

6. Security Configuration Testing: Test the web application's security configuration

settings, such as encryption, password policies, etc.

7. Vulnerability Scanning: Use Sahi Pro's vulnerability scanning feature to scan the web

application for common vulnerabilities and weaknesses.

Testing Plugins

Users can run Sahi scripts using Maven. User can create a Maven project in

Eclipse and set JDK path for running. Editing pom.xml file to the below code

will enable run.

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>sahi-examples</groupId>

 <artifactId>sahi-integration-example</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>sahi-integration-example</name>

<build>

 <plugins>

 <plugin>

 <artifactId>maven-antrun-plugin</artifactId>

 <version>1.7</version>

 <executions>

 <execution>

 <phase>generate-sources</phase>

 <configuration>

 <target name="target_to_be_executed">

 <ant dir="<SahiInstallationDir>" antfile="build.xml"

/>

 </target>

 </configuration>

 <goals>

 <goal>run</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

</project>

Changing SahiInstallationDir, target name and antfile according to your Configuration will

enable Maven to build and run test cases. User can use

https://resources.sahipro.com/docs/using-sahi/playback-via-ant.html to create antfile required.

Sahi offers integration with Jenkins Continuous Integration system. Sahi suites are executed

periodically and CI system like Jenkins can trigger the test suites execution when code changes

occur and committed to the code base. To playback test scenarios, Sahi Pro requires real

browsers. However, many Jenkins/build machines run in server mode without a GUI, which

makes it difficult to use Sahi Pro. As a result, end-users must either use headless browsers or

execute Sahi scripts remotely to work around this issue.

Sahi integrates with JetBrains - TeamCity CI system. Configuration needs to be set before CI

system can trigger test suite execution.

Details on setup are found here: https://resources.sahipro.com/docs/using-sahi/integrate-with-

teamcity.html.

Sahi Integration Support

Sahi can be integrated with external tools using predefined URL calls. This document

provides a step-by-step guide to using these URL calls for integration with Sahi. The guide is

https://resources.sahipro.com/docs/using-sahi/playback-via-ant.html
https://resources.sahipro.com/docs/using-sahi/integrate-with-teamcity.html
https://resources.sahipro.com/docs/using-sahi/integrate-with-teamcity.html
https://resources.sahipro.com/docs/using-sahi/integrate-with-jenkins.html

divided into sections that correspond to the steps required for executing a script or suite from

an external tool. Users can modify parameters in the guide to generate a URL specific to their

environment.

The Sahi server typically runs on localhost:9999 by default. If you're using a Sahi server from

another machine, you'll need to modify the host and port accordingly and then click the

"Update" button.

Get Script Directory:

To get the script path specified in the sahi.properties file, you can use the following Request

URL. You will get the scripts path as response as shown below.

Get All Scripts Path in the given Directory:

http://localhost:9999/_s_/dyn/SahiEndPoint_scriptsList?suites=true&dir=C%3A%2Fsahipro

%2Fuserdata%2Fscripts%2F

Get Available Modes:

Request URL: http://localhost:9999/_s_/dyn/SahiEndPoint_getStartWithOptions

http://localhost:9999/_s_/dyn/SahiEndPoint_getStartWithOptions

Response:

["GENERIC","BROWSER","ANDROID_BROWSER","IOS_BROWSER"]

Get All Available Browsers:

Get All Available Android Devices/Emulators

Get All Available iOS Devices/Simulators:

Running the Script/Suite:

To execute a suite or script, you can use a URL like this:

Users can visit this link to learn more about Sahi Pro integration with other software using

REST APIs: https://resources.sahipro.com/docs/using-sahi/sahi-integration.html

Testing Overall

Automation is the strong point in Sahi Pro. User can just record any scenario on application

under test and use playback to test it with different data.

Weakness: Sahi does one thing i.e., Automation and it’s good at doing it optimally without

overhead to maintain test scripts. Users must just maintain data related to the test cases

correctly. No naming conventions are proposed in the Sahi docs itself.

Reports

Reports are generated after each execution. User can reach logs site to verify reports

generated.

https://resources.sahipro.com/docs/using-sahi/sahi-integration.html

Contributions

Naga Vara Pradeep Yendluri – Sahi Record feature, Data Drive, Sahi script research and its

usage in automating various testing methods, BDTA execution.

Varuna Sri Budidi – Playback feature, Data driven test case execution

Yogesh – Sahi Economics & usage of automation and identifying elements in web

applications

Hari Prasad – Sahi History, BDTA in Sahi

Sreenivas – Sahi Editor, BDTA applying in Sahi Scripts using scenarios.

Sumanth – Automation using Sahi. Parallel execution in Sahi using Data Driven Suites

Vamshi – Logging in Sahi, creating library functions in Sahi.

Ishitha – Suites in Sahi, suites execution.

