
Sahi Software



Agenda
Introduction



Introduction



Sahi is a software testing tool that

provides a range of features to support

testing.

Sahi has Simple & Powerful APIs to

easily identify elements on DOM,

perform mouse, keyboard and touch

actions seamlessly.

Sahi embeds automatic waits and

eliminates wait for statements and can

navigate inconsistent page loads.

Sahi Object Spy and Recorder to identify

elements across devices and software. It

can also work on applications that

generate dynamic IDs for elements.

Features



Features

Sahi implements Business friendly

frameworks and uses inbuilt

Business Driven Test Automation to

let business analysts and non-

technical professionals contribute

towards test cases.

Sahi can run thousands of

scripts that are packed into a

suite on a single machine in

parallel mode or can be

distributed across machines.

Sahi employs automatic logging

while automating applications

that contains the complete

information about the run. This

helps testers identify the exact

line where script is failing. All

logs are stored in database.



Roles and Input 
Combinations



Roles and Input Combinations (Contd.)



Economics

Sahi Pro has 4 pricing plans available for customers

• Sahi Pro for Web

• Works across browsers and operating systems

• Sahi Pro for Desktop

• Works for windows desktop applications(WPF, .NET, etc.,) 

• Java based applications

• Sahi Pro for Mobile

• Mobile native & hybrid applications in iOS and Android

• Sahi Pro for SAP

• SAP GUI for windows

All plans support Database, File system, REST/Web services

Each plan has user / concurrent licenses available. Sahi Pro offers 30 days free trial.



Interface 



Sahi Controller has Record, Playback,

Clipboard and Info menus to help in

automation process.

Users can provide a script name with

extension .sah and click on red dot

button to start recording user actions on

an application under test.

All actions are shown in Evaluate

Expression and Recorded steps tabs to

see the steps being recorded.

Clicking the red dot button will stop the

recording and user can see recorded

steps in Recorded steps tab of controller.

Sahi Controller



• Let us start by recording and playing

back a simple script.

• Sahi Pro is not just a record and

playback tool, recording is a

steppingstone to creating automation

scripts.

• User can start application by clicking

the application shortcut on desktop.

• Let's record our first script.

• Enter a script name to save the

recording.And click record button.

Record and 
Playback



• Ener a start URL:

http://sahitest.com/demo/training to

open Sahi provided demo application

to test.

• Click on Go button to start

recording steps in application.

• User can see the navigateTo

expression being recorded onto

script.

• When user types in username, the

event is recorded.

• All the steps are autosaved to the

file.

• User now clicks on login button, to

record the login action.

http://sahitest.com/demo/training


Now we add books quantity to cart

All the actions are recorded in Recorded steps view

After Add button is clicked, books are added to the Cart



In this test case we verify that the Grand Total is correct, for

the books quantity we added to cart.

We identify the total element and create an assertion for it. To

do that we need to follow the step shown in controller.

Press Control key and hover mouse over total element.

User can now click on Assert button to get different assert

suggestions that can be done on the selected element.

Generated assert statements check if the element is existing in

DOM, visible to user and verifies if it is equal to 1400 value.

User can verify the assertions by clicking the arrow button

below the Evaluate expression tab.



• Changing 1400 value to 1450 and then evaluating the

asserts will result in test failure.

• When we are good with the assert statements,

clicking on Append button appends the generated

asserts to the script.

• Actions that we perform on the browser are

automatically recorded. Actions that we perform on

the Sahi Controller, need to be appended to the script

manually.

• Let’s logout, examine the recorded script and run the

automation from start.

• Clicking red button will stop the recording and save all

recorded steps to the .sah file provided at the start of

recording.



• Click on Editor to open Sahi Scripts Editor. This opens

browser and reaches localhost:9999 website to open editor

hosted locally by Sahi.

• User can see the recorded steps while automating web application. All steps are recorded in JavaScript statements.

Main advantage is user does not have to deal with xpaths or CSS selectors to identify an element on DOM. Wait

statements are also taken care implicitly by Sahi.



• Let’s playback the script that we just recorded. Open Sahi

Controller, and go to Playback tab.

• Clicking Play button starts the script and all Statements executed

are shown in Statements window below.

• User can use Pause button to stop the script execution.

• Step button is used to run the script step by step.

• Stop button brings execution to halt and shows message in Statements tab



Logging

• User can go through the logs using

Logs link in Controller window.

• Logs contains suite runs, Average Time

Taken By Browsers graph, Success

Percentage By Different Browsers pie

chart and all the Playbacks conducted.



• User can go through the Sahi reports to know more about the execution process, the time taken for each action

to run.



Let’s see a failure test case in the script. Changing quantity of book 3 in the cart will give us a different total. When the

grand total is not equal to 1400, Sahi logs an error in the test case.

User can playback the script from Sahi Editor without reaching Controller. Select the script file, browser and start URL

and click on Run button to start the playback.



Let’s see a failure test case in the script. Changing quantity

of book 3 in the cart will give us a different total. When

the grand total is not equal to 1400, Sahi logs an error in

the test case.

User can playback the script from Sahi Editor without

reaching Controller.

Before execution of any step, Sahi waits for any Ajax

activity, network activity to subside.

If a step seems to be failing, Sahi waits for 2 seconds and

tries to re-execute that step. It will do this 5 times,

between the retries, if the system recovers, then Sahi will

execute that step, else it’ll mark the step as a failure.



Let’s go through the logs, we see that script itself is in red

Opening the script, the assert step is marked in red and showing the expected and actual values mismatch. Opening

onScritpFailure step shows the screenshot when the assert statement failure happened during test run.



Library Functions
The steps that we see in the Sahi Script are low

level instructions to the computer to perform

actions on a browser.

Language of the business is much more in human

speaking terms like – login to the system, add

books quantities to the cart, check the total

amount, and logout from the system.

So, we need to create Business Level Abstractions

out of the steps that we recorded.

We create Business Level Abstractions using

Functions in Sahi.

To create a function, we select steps that pertain

to a logical business step and click on Create

Function button, provide a function name and click

on continue.



Sahi creates a function and extracts possible parameters from the recorded

steps and takes them as arguments to the function.

In the recorded steps place, it will call the created function with the values

from the steps.

We do similar procedure for remaining steps, combine the quantity adding

steps to a single function.





To reuse the functions generated, we place them in a separate .sah

script file.

Press Control and click on the function to open

Context panel.

Select the library file from File Path where the function was

defined and implemented. Click on Include button to add

import statement to the current script.



Playback the script.

Let’s look at the logs for the execution completed in Sahi Logs window.

Each function is listed in log and time for execution is listed after each step.



Let’s change the script little bit to raise an error in grand total assertion, and see the logs

Grouping as functions let’s us detect the code where

the assertion failed. Screenshot is also provided in

logs for the failure occurred.



Scenarios
Sahi Scripts are written in JavaScript

language.

Testers are present where they understand

the business functionality of the application,

but do not necessarily understand the syntax

and semantics of Sahi Script.

To help them participate in the automation

process, we have an alternative way of

defining our test cases and scenarios. We do

that using a scenario file.

Click on New button and select Scenario

button.

Click on Save button and save the file.



• Give a name in the test case column.

• Add a description to the test case in Argument 1 column.

• User can use different functions available in cart_library

file.

• When user starts to type the function name, Sahi shows

the available functions.



• Ctrl+click on the function to know more details about it

• Select Include button to include cart_library.sah in the

current scenario file.

• Now user can enter the data that is needed for login to

happen i.e., username and password in Argument 1 and

Argument 2 columns

• User can pass the parameters values in Function Details

window.



• Let’s run the script

• Opening logs

• Clicking the step name

shows the function called

and the code executed.



Data Driven 
Suites





Data Driven Suites Logs



Data Driven Suites Logs Detailed View



Business-Driven Test Automation



Thank You


	Slide 1: Sahi Software
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4
	Slide 5: Features
	Slide 6: Roles and Input Combinations 
	Slide 7: Roles and Input Combinations (Contd.)
	Slide 8: Economics
	Slide 9: Interface 
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Library Functions
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Scenarios
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Data Driven Suites
	Slide 34
	Slide 35: Data Driven Suites Logs
	Slide 36
	Slide 37: Business-Driven Test Automation
	Slide 38: Thank You

