
CSCE 5350.001

Fundamentals of Database Systems

Project Part 5

Naga Vara Pradeep Yendluri

11646461

nagavarapradeepyendluri@my.unt.edu

Project Description:

The Movie Producer Management System is an application that is being developed for a movie

production company like Universal Studios. The system is designed to store and manage

information about the company's movies, artists, songs, employees, and various other aspects of

the movie production process. The system will store information about the producing site

locations, movie-script-inventory, sponsoring companies, employee data, and payroll. It will also

store information about the artists and the movies they have worked on, as well as the various

aspects of the movie production process, such as soundtracks, awards, and more.

We have Identified the following entities and relations for the movie producer management

system. We have identified the Functional Dependencies to make the database normalized to

BCNF or 3NF and identified the dependency preserving and lossless join between the tables also

updated the tables accordingly.

1. Movies: The entity 'Movies' provides information about the different movies produced by

the company. It has 6 attributes, including the movie id, movie title, release date, duration,

in production and director. This entity is important for keeping track of the different movies

produced by the company and the information related to each movie.

2. Artists: The entity 'Artists' provides information about the actors involved in the movies.

It has 5 attributes, including the actors id, actors name, actors date of birth, address and

age. This entity is important for maintaining the information about the actors, their age and

date of birth, which is required for casting actors for various roles.

3. Genre: The entity 'Genre' provides information about the genre to which the movie

belongs. It has 2 attributes, genre id, and genre name. This entity is important for

categorizing the movies into different genres, which helps in better management and

analysis of the movies.

4. Sponsoring Companies: The entity 'Sponsoring Companies' provides information about

the companies that sponsor the movies. It has 4 attributes, including sponsor id, sponsor

name, movie id and movie sponsored. This entity is important for tracking the sponsorship

deals and the companies that sponsor the movies.

5. Site Locations: The entity 'Site Locations' provides information about the different

producing sites, including their addresses and buildings. It has 4 attributes, including

location id, name, address, and building names. This entity is important for tracking the

different producing sites and their details, which is essential for managing the movie

production process.

6. Buildings: The entity 'Buildings' provides information about the buildings in each

producing site. It has 3 attributes, including Building id, name, and type of building. This

entity is important for tracking the different types of buildings present in the producing

sites, which is essential for managing the resources and maintenance of the buildings.

7. Movie Script Inventory: The entity 'Movie Script Inventory' provides information about

the movie scripts. It has 5 attributes, including script id, name, movie id, author, and

publication date. This entity is important for tracking the different movie scripts and the

information related to each script.

8. Employee: The entity 'Employee' provides information about the employees of the

company. It has 5 attributes, including employee id, name, job title, hourly pay and phone.

This entity is important for maintaining the information about the employees, their job title

and contact information, which is required for managing the human resources of the

company.

9. Payroll: The entity 'Payroll' provides information about employee payroll data. It has 5

attributes, including employee id, hours worked, joining date, work date, etc. This entity is

important for tracking the payroll information of the employees, which is essential for

managing the finances of the company.

10. Songs: The entity 'Songs' provides information about different soundtracks used in the

movies. It has 4 attributes, including song id, track title, movie id, and singer name. This

entity is important for tracking the different soundtracks used in the movies and the

information related to each soundtrack.

Latest Schema:

Movie (movie_id, title, avg_rating, date_of_release, duration, script_inventory_id, director,

in_production)

Songs (song_id, song_name, singer_name, movie_id)

Genre (genre_id, genre_name)

TaggedWith (movie_id, genre_id)

SiteLocation (location_id, location_name, address)

ShotAt (location_id, movie_id)

Building (building_id, building_name, purpose, location_id)

PostProductionDoneIn (movie_id, building_id)

Employees (employee_id, employee_name, designation, phone_number, hourly_pay,

employee_level)

Manages (employee_id, location_id)

Payroll (payroll_id, employee_id, hours_worked, date)

SponsoringCompany (company_id, company_name, num_movies_produced)

getsPaidBy (artist_id, company_id)

Produces (company_id, movie_id)

Artist (artist_id, artist_name, date_of_birth, gender, address)

MovieScriptInventory (script_inventory_id, script_inventory_name)

ActsIn(movie_id, artist_id)

Rating(rating_id, movie_id, rating)

Additional Assumptions:

• From the latest schema we got 18 functional dependencies.

• Normalized the tables into 2NF,3NF and BCNF.

Functional dependencies for the database:

 Movie: movie_id → title, date_of_release, duration, script_inventory_id,

 director, in_production

 MovieRating: movie_id → avg_rating

 Songs: song_id → song_name, singer_name, movie_id

 Genre: genre_id → genre_name

 MovieGenre: (movie_id, genre_id) → {movie_id, genre_id}

 SiteLocation: location_id → location_name, address

 MovieLocation: (location_id, movie_id) → {location_id, movie_id}

 Building: building_id → building_name, purpose, location_id

 MoviePostProduction: (movie_id, building_id) → {movie_id, building_id}

 Employees: employee_id → employee_name, designation, phone_number, employee_level

 EmployeeSalary: employee_id → hourly_pay

 Manages: (employee_id, location_id) → {employee_id, location_id}

 Payroll: payroll_id → employee_id, hours_worked, date, hourly_pay

 SponsoringCompany: company_id → company_name, num_movies_produced

 Artist: artist_id → artist_name, date_of_birth, gender, address

 ArtistCompany: (artist_id, company_id) → {artist_id, company_id}

 MovieScriptInventory: script_inventory_id → script_inventory_name

 ActsIn: (movie_id, artist_id) → {movie_id, artist_id}

From the above functional dependencies, we are taking 12 among them.

Normalization:

• 1NF:

The tables are in 1NF since they do not have repeating groups or multivalued attributes.

• 2NF:

Movie:

Movie: movie_id → title, date_of_release, duration, script_inventory_id, director, in_production

Candidate key, prime attributes = { movie_id }

Non – prime attributes = { in_production }

Since, both the location_name and address are fully dependent on location_id. There are no

partial dependencies, hence it is in 2NF.

Songs:

song_id → song_name, singer_name, movie_id

Candidate key, prime attributes = { song_id }

Non – prime attributes = { song_name, singer_name, movie_id }

All the non – prime attributes are fully dependent on candidate key (song_id). So, it is in 2NF

Genre:

genre_id → genre_name

Candidate key, prime attributes = { genre_id }

Non – prime attributes = { genre_name }

Since, the FD consists of only one attribute on both sides, so it is trivially in 2NF.

Site location:

location_id → location_name, address

Candidate key, prime attributes = { location_id }

Non – prime attributes = { location_name, address }

All the non–prime attributes are fully dependent on the candidate key this is in 2NF.

Payroll:

payroll_id → employee_id, hours_worked, date, hourly_pay

Candidate key, prime attributes = { payroll_id }

Non – prime attributes = { employee_id, hours_worked, date, hourly_pay }

All the non-prime attributes are fully dependent on primary key it is in 2NF.

Artist:

artist_id → artist_name, date_of_birth, gender, address

Candidate key, prime attributes = { artist_id }

Non – prime attributes = { artist_name, date_of_birth, gender, address }

All the non–prime attributes are fully dependent on the candidate key. So, it is in 2NF.

ActsIn:

movie_id, artist_id → movie_id, artist_id

Candidate key, prime attributes = { artist_id, movie_id }

Non – prime attributes = None

Hence there are no partial dependencies and non-prime attributes it is in 2NF.

MoviePostProduction:

movie_id, building_id → movie_id, building_id

Candidate key, prime attributes = { movie_id, building_id }

Non – prime attributes =None

Hence there are no partial dependencies and non-prime attributes it is in 2NF.

Employees:

employee_id → employee_name, designation, phone_number, employee_level

Candidate key, prime attributes = { employee_id }

Non – prime attributes ={ employee_name, designation, phone_number, employee_level }

As there is only one candidate key and no partial dependencies on any part of the candidate key,

this relation is already in 2NF.

MovieScriptInventory:

script_inventory_id → script_inventory_name

Candidate key, prime attributes ={ script_inventory_id }

Non – prime attributes =None

Since the given FD has only one attribute on the right-hand side, it is already in 2NF and no

further normalization is needed.

• 3NF:

Movie:

Movie: movie_id → title, date_of_release, duration, script_inventory_id, director, in_production

Candidate key, prime attributes = { movie_id }

Non – prime attributes = { in_production }

Movie_id is the super key. There are no transitive dependencies in the relation. Hence, the given

relation is in 3NF.

Songs:

song_id → song_name, singer_name, movie_id

Candidate key, prime attributes = { song_id }

Non – prime attributes = { song_name, singer_name, movie_id }

Any combination of attributes that includes song_id would be a super key.

Genre:

genre_id → genre_name

Candidate key, prime attributes = { genre_id }

Non – prime attributes = { genre_name }

Genre_id is the super key. There are no transitive dependencies in the relation. Hence, the given

relation is in 3NF.

Site location:

location_id → location_name, address

Candidate key, prime attributes = { location_id }

Non – prime attributes = { location_name, address }

Location_id is the super key. There are no transitive dependencies in the relation. Hence, the

given relation is in 3NF.

Payroll:

payroll_id → employee_id, hours_worked, date, hourly_pay

Candidate key, prime attributes = { payroll_id }

Non – prime attributes = { employee_id, hours_worked, date, hourly_pay }

Any combination of attributes that includes payroll_id would be a super key.Since there are no

transitive dependencies. Hence, the given relation is in 3NF.

Artist:

artist_id → artist_name, date_of_birth, gender, address

Candidate key, prime attributes = { artist_id }

Non – prime attributes = { artist_name, date_of_birth, gender, address }

Any combination of attributes that includes artist_id would be a super key. There are no

transitive dependencies in the relation. Hence, the given relation is in 3NF.

ActsIn:

movie_id, artist_id → movie_id, artist_id

Candidate key, prime attributes = { artist_id, movie_id }

Non – prime attributes = None

Any combination of attributes that includes both artist_id and movie_id would be a superkey

for this relation. There are no transitive dependencies in the relation. Hence, the given relation is

in 3NF.

MoviePostProduction:

movie_id, building_id → movie_id, building_id

Candidate key, prime attributes = { movie_id, building_id }

Non – prime attributes =None

The super key is { movie_id, building_id }.

There are no transitive dependencies in the relation. Hence, the given relation is in 3NF.

Employees:

employee_id → employee_name, designation, phone_number, employee_level

Candidate key, prime attributes = { employee_id }

Non – prime attributes ={ employee_name, designation, phone_number, employee_level }

This functional dependency is already in 3NF as there are no transitive dependencies.

MovieScriptInventory:

script_inventory_id → script_inventory_name

Candidate key, prime attributes ={ script_inventory_id }

Non – prime attributes ={}

Since there is only one FD it will satisfy the 3NF condition and it is in 3NF.

• BCNF:

Movie:

Movie: movie_id → title, date_of_release, duration, script_inventory_id, director, in_production

Candidate key, prime attributes = { movie_id }

Non – prime attributes = { in_production }

The only candidate key is { movie_id }, and there are no non-trivial dependencies. Therefore, the

relation is in BCNF.

Songs:

song_id → song_name, singer_name, movie_id

Candidate key, prime attributes = { song_id }

Non – prime attributes = { song_name, singer_name, movie_id }

The only candidate key is { song_id }, and there are no non-trivial dependencies. Therefore, the

relation is in BCNF.

Genre:

genre_id → genre_name

Candidate key, prime attributes = { genre_id }

Non – prime attributes = { genre_name }

The only candidate key is { genre_id }, and there are no non-trivial dependencies. Therefore, the

relation is in BCNF.

Site location:

location_id → location_name, address

Candidate key, prime attributes = { location_id }

Non – prime attributes = { location_name, address }

The only candidate key is { location_id }, and there are no non-trivial dependencies. Therefore,

the relation is in BCNF.

Payroll:

payroll_id → employee_id, hours_worked, date, hourly_pay

Candidate key, prime attributes = { payroll_id }

Non – prime attributes = { employee_id, hours_worked, date, hourly_pay }

The given relation is not in BCNF. To bring it to BCNF, we need to decompose the relation into

two relations:

• R1(employee_id, hourly_pay)

• R2(payroll_id, employee_id, hours_worked, date)

Each relation has a single determinant for each of its attributes, and the relation satisfies BCNF.

Artist:

artist_id → artist_name, date_of_birth, gender, address

Candidate key, prime attributes = { artist_id }

Non – prime attributes = { artist_name, date_of_birth, gender, address }

Since there is only one candidate key and no functional dependencies other than the trivial ones,

the relation is automatically in BCNF.

ActsIn:

movie_id, artist_id → movie_id, artist_id

Candidate key, prime attributes = { artist_id, movie_id }

Non – prime attributes = None

Since there are no non-prime attributes and every non-trivial functional dependency in the

relation has a candidate key as the determinant, the given relation is in BCNF.

MoviePostProduction:

movie_id, building_id → movie_id, building_id

Candidate key, prime attributes = { movie_id, building_id }

Non – prime attributes =None

Since there are no prime attributes, it is in BCNF.

Employees:

employee_id → employee_name, designation, phone_number, employee_level

Candidate key, prime attributes = { employee_id }

Non – prime attributes ={ employee_name, designation, phone_number, employee_level }

It is also in BCNF since the left-hand side (LHS) contains the candidate key.

MovieScriptInventory:

script_inventory_id → script_inventory_name

Candidate key, prime attributes ={ script_inventory_id }

Non – prime attributes ={}

As the given FD has only one candidate key it is the super key, so it is in BCNF.

Therefore, all the Functional dependencies are in BCNF.

Dependency Preserving and Lossless Join:

Movie:

Movie: movie_id → title, date_of_release, duration, script_inventory_id, director, in_production

Here we have Movie table in which we have attributes of movie_script_invetory table.

Comparing both tables to find whether they have common attributes and dependencies.

Movie:

• movie_id → title

• movie_id → date_of_release

• movie_id → duration

• movie_id → script_inventory_id

• movie_id → director

• movie_id → in_production

Script_Inventory:

• script_inventory_id → {}

The common attribute between the two tables is "script_inventory_id". However, since the

"script_inventory_id" attribute is a foreign key in the "Movie" table.

Therefore, based on the information given, we can conclude that the join between the "Movie"

and "Script_Inventory" tables is both dependency preserving and lossless.

Songs:

song_id → song_name, singer_name, movie_id

If the "movie_id" attribute in the "song" table refers to a separate table containing information

about the movies that the songs belong to, we have the following dependencies in each table:

Song:

• song_id → song_name

• song_id → singer_name

• song_id → movie_id

Movie:

• movie_id → {}

The common attribute between the two tables is "movie_id".

For example, if a movie has two songs with different song_ids but the same singer and song

name, then the join would produce an additional tuple that combines the information for those

two songs.

Therefore, we can conclude that the join between the "Song" and "Movie" tables is dependency

preserving and lossless join.

Genre:

• genre_id → genre_name

There are no other tables to join with, so there are no common attributes to consider.

Based on the above scenario this is dependency preserving,

Since the dependency is a simple one-to-one mapping between genre_id and genre_name, there

are no redundant tuples in the table that can be eliminated.

Therefore, we can conclude that the table is lossless.

Site location:

location_id → location_name, address

Location:

• location_id → location_name

• location_id → address

There are no other tables to join with, so there are no common attributes to consider.Based on

these dependencies, we can conclude that the table is dependency preserving, as the

dependencies are trivially preserved by any join operation.

To determine if the table is lossless, we need to check if the table if there are any redundant

tuples, as there are no redundant tuples the join is lossless.

Payroll:

payroll_id → employee_id, hours_worked, date, hourly_pay

These are the individual dependencies.

Payroll:

• payroll_id → employee_id

• payroll_id → hours_worked

• payroll_id → date

• payroll_id → hourly_pay

From the above dependencies we conclude that it is dependency preserving.

Since payroll_id is the primary key of the table, there are no redundant tuples in the table that

can be eliminated without losing any information. Therefore, we can conclude that the table is

lossless.

The "Payroll" table is both dependency preserving and lossless.

Artist:

artist_id → artist_name, date_of_birth, gender, address

The only table we have is the one containing the information about artists. In this case, we can

identify the following dependency in the table:

Artists:

• artist_id → artist_name

• artist_id → date_of_birth

• artist_id → gender

• artist_id → address

Based on these dependencies, we can conclude that the table is dependency preserving, as all of

the dependencies are preserved by any join operation.

The "Artists" table is lossless, since there are no redundant tuples that can be eliminated without

losing any information.

ActsIn:

movie_id, artist_id → movie_id, artist_id

The combination of values in movie_id and artist_id uniquely determines the values of movie_id

and artist_id. This dependency is trivially true, as the right-hand side of the dependency is simply

equal to the left-hand side.

The join of the two tables on the common attribute movie_id and artist_id will result in a table

with the same attributes as the original tables.

Therefore, the join between these two tables is both dependency preserving and lossless.

MoviePostProduction:

movie_id, building_id → movie_id, building_id

The movie_id and building_id uniquely determine the values of movie_id and building_id. This

dependency is trivially true.

Both the primary keys movie_id and building _id, the join will result in the same table without

any information loss.

Hence, the MoviePostProduction is lossless and dependency preserving.

Employees:

employee_id → employee_name, designation, phone_number, employee_level

Employees:

• employee_id → employee_name

• employee_id → designation

• employee_id → phone_number

• employee_id → employee_level

Based on these dependencies, we can conclude that the table is dependency preserving, as all of

the dependencies are preserved by any join operation.

The "Employees" table is lossless, since there are no redundant tuples that can be eliminated

without losing any information.

MovieScriptInventory:

script_inventory_id → script_inventory_name

Since we have no other table, the dependency is preserved.

Since the script_inventory_id is a primary key, there can be no duplicate values of

script_inventory_id in the table. Therefore, there can be no redundant tuples in the table, and the

table is lossless.

New tables:

 Movie:

 CREATE TABLE Movie (

 movie_id INT PRIMARY KEY,

 title VARCHAR2(100) NOT NULL,

 date_of_release DATE NOT NULL,

 duration INT NOT NULL,

 script_inventory_id INT REFERENCES MovieScriptInventory(script_inventory_id) NOT

NULL,

 director VARCHAR2(100) NOT NULL,

 in_production CHAR(1) NOT NULL

);

 MovieRating:

 CREATE TABLE MovieRating (

 movie_id INT PRIMARY KEY REFERENCES Movie(movie_id),

 avg_rating NUMBER(3, 1) NOT NULL

);

 Songs:

 CREATE TABLE Songs (

 song_id INT PRIMARY KEY,

 song_name VARCHAR2(100) NOT NULL,

 singer_name VARCHAR2(100) NOT NULL,

 movie_id INT REFERENCES Movie(movie_id) NOT NULL

);

 Genre:

 CREATE TABLE Genre (

 genre_id INT PRIMARY KEY,

 genre_name VARCHAR2(100) NOT NULL

);

 MovieGenre:

 CREATE TABLE MovieGenre (

 movie_id INT REFERENCES Movie(movie_id),

 genre_id INT REFERENCES Genre(genre_id),

 PRIMARY KEY(movie_id, genre_id)

);

 SiteLocation:

 CREATE TABLE SiteLocation (

 location_id INT PRIMARY KEY,

 location_name VARCHAR2(100) NOT NULL,

 address VARCHAR2(200) NOT NULL

);

 MovieLocation:

 CREATE TABLE MovieLocation (

 location_id INT REFERENCES SiteLocation(location_id),

 movie_id INT REFERENCES Movie(movie_id),

 PRIMARY KEY(location_id,movie_id)

);

 Building:

 CREATE TABLE Building (

 building_id INT PRIMARY KEY,

 building_name VARCHAR2(100) NOT NULL

);

 Employees:

 CREATE TABLE Employees (

 employee_id INT PRIMARY KEY,

 hourly_pay NUMBER(6, 2) NOT NULL,

 UNIQUE(phone_number)

);

 EmployeeDetails:

 CREATE TABLE EmployeeDetails (

 employee_id INT REFERENCES Employees(employee_id),

 employee_name VARCHAR2(100) NOT NULL,

 designation VARCHAR2(100) NOT NULL,

 employee_level VARCHAR2(100) NOT NULL,

 PRIMARY KEY(employee_id)

);

 Manages:

 CREATE TABLE Manages (

 employee_id INT REFERENCES Employees(employee_id),

 location_id INT REFERENCES SiteLocation(location_id),

 PRIMARY KEY(employee_id, location_id)

);

 Payroll:

 CREATE TABLE Payroll (

 payroll_id INT PRIMARY KEY,

 employee_id INT REFERENCES Employees(employee_id) NOT NULL,

 hours_worked NUMBER(3, 1) NOT NULL,

 date DATE NOT NULL

);

 Sponsoring_Company:

 CREATE TABLE SponsoringCompany (

 company_id INT PRIMARY KEY,

 company_name VARCHAR2(100) NOT NULL

);

 CompanyMovies:

 CREATE TABLE CompanyMovies (

 company_id INT REFERENCES SponsoringCompany(company_id),

 movie_id INT REFERENCES Movie(movie_id),

 PRIMARY KEY(company_id, movie_id)

);

 getsPaidBy:

 CREATE TABLE getsPaidBy (

 artist_id INT PRIMARY KEY REFERENCES Artist(artist_id),

 company_id INT REFERENCES SponsoringCompany(company_id) NOT NULL

);

 Produces:

 CREATE TABLE Produces (

 company_id INT REFERENCES SponsoringCompany(company_id),

 movie_id INT REFERENCES Movie(movie_id),

 PRIMARY KEY(company_id, movie_id)

);

 ArtistDetails:

 CREATE TABLE ArtistDetails (

 artist_id INT REFERENCES Artist(artist_id),

 date_of_birth DATE NOT NULL,

 gender CHAR(1) NOT NULL,

 address VARCHAR2(200) NOT NULL,

 PRIMARY KEY(artist_id)

);

 ActsIn:

 CREATE TABLE ActsIn (

 movie_id INT REFERENCES Movie(movie_id),

 artist_id INT REFERENCES Artist(artist_id),

 PRIMARY KEY(movie_id, artist_id)

);

 Rating:

 CREATE TABLE Rating (

 rating_id INT PRIMARY KEY,

 movie_id INT REFERENCES Movie(movie_id) NOT NULL,

 rating NUMBER(1, 1) NOT NULL

);

 PostProductionDoneIn:

 CREATE TABLE PostProductionDoneIn (

 movie_id INT REFERENCES Movie(movie_id),

 building_id INT REFERENCES Building(building_id),

 PRIMARY KEY(movie_id, building_id)

);

 BuildingPurpose:

 CREATE TABLE BuildingPurpose (

 building_id INT REFERENCES Building(building_id),

 purpose VARCHAR2(100) NOT NULL,

 PRIMARY KEY(building_id, purpose)

);

 BuildingLocation:

 CREATE TABLE BuildingLocation (

 building_id INT REFERENCES Building(building_id),

 location_id INT REFERENCES SiteLocation(location_id),

 PRIMARY KEY(building_id, location_id)

);

The above tables satisfy the BCNF and 3NF requirements and all functional dependencies.

In summary, we identified 21 non-trivial functional dependencies among the original tables and

normalized them into 22 tables that satisfy BCNF and 3NF requirements.

The final Database:

Movie_Script_Inventory:

CREATE TABLE MovieScriptInventory (script_inventory_id INT PRIMARY KEY,

script_inventory_name VARCHAR(255) NOT NULL);

Movies:

CREATE TABLE Movie (

 movie_id INT PRIMARY KEY,

 title VARCHAR2(100) NOT NULL,

 date_of_release DATE NOT NULL,

 duration INT NOT NULL,

 script_inventory_id INT REFERENCES MovieScriptInventory(script_inventory_id) NOT

NULL,

 director VARCHAR2(100) NOT NULL,

 in_production CHAR(1) NOT NULL

);

Movie Rating:

CREATE TABLE MovieRating (movie_id INT PRIMARY KEY REFERENCES

Movie(movie_id), avg_rating NUMBER(3, 1) NOT NULL);

Songs:

CREATE TABLE Songs (

song_id INT NOT NULL,

song_name VARCHAR(255) NOT NULL,

singer_name VARCHAR(255) NOT NULL,

movie_id INT NOT NULL,

PRIMARY KEY (song_id),

FOREIGN KEY (movie_id) REFERENCES Movie(movie_id)

);

Genre:

CREATE TABLE Genre (

genre_id INT NOT NULL,

genre_name VARCHAR(255) NOT NULL,

PRIMARY KEY (genre_id)

);

Tagged with:

CREATE TABLE TaggedWith (

movie_id INT NOT NULL,

genre_id INT NOT NULL,

PRIMARY KEY (movie_id, genre_id),

FOREIGN KEY (movie_id) REFERENCES Movie(movie_id),

FOREIGN KEY (genre_id) REFERENCES Genre(genre_id)

);

Sitelocation:

CREATE TABLE SiteLocation (

location_id INT NOT NULL,

location_name VARCHAR(255) NOT NULL,

address VARCHAR(255) NOT NULL,

PRIMARY KEY (location_id)

);

Building:

CREATE TABLE Building (building_id INT PRIMARY KEY, building_name

VARCHAR2(100) NOT NULL);

ShotAt:

CREATE TABLE ShotAt (

location_id INT NOT NULL,

movie_id INT NOT NULL,

PRIMARY KEY (location_id, movie_id),

FOREIGN KEY (location_id) REFERENCES SiteLocation(location_id),

FOREIGN KEY (movie_id) REFERENCES Movie(movie_id)

);

PostProductionDoneIn:

CREATE TABLE PostProductionDoneIn (

movie_id INT NOT NULL,

building_id INT NOT NULL,

PRIMARY KEY (movie_id, building_id),

FOREIGN KEY (movie_id) REFERENCES Movie(movie_id),

FOREIGN KEY (building_id) REFERENCES Building(building_id)

);

Employees:

CREATE TABLE Employees (

employee_id INT NOT NULL,

employee_name VARCHAR(255) NOT NULL,

designation VARCHAR(255) NOT NULL,

phone_number VARCHAR(10) NOT NULL UNIQUE,

PRIMARY KEY (employee_id),

CONSTRAINT designatoin_constraint_violated CHECK (

designation IN ('choreographers', 'security’,'sound engineer', 'makeup artist', 'electrician',

'janitor','manager')));

Payroll:

CREATE TABLE Payroll (

payroll_id INT NOT NULL,

salary FLOAT NOT NULL,

employee_id INT NOT NULL,

hours_worked FLOAT NOT NULL,

PRIMARY KEY (payroll_id),

FOREIGN KEY (employee_id) REFERENCES Employees(employee_id),

CONSTRAINT salary_constraint_violated CHECK (salary > 0),

CONSTRAINT hours_constraint_violated CHECK (hours_worked > 0 and hours_worked <=

40)

);

Sponsoring company

CREATE TABLE SponsoringCompany (

company_id INT NOT NULL,

company_name VARCHAR(255) NOT NULL UNIQUE,

PRIMARY KEY (company_id)

);

Manages:

CREATE TABLE Manages (

employee_id INT NOT NULL,

location_id INT NOT NULL,

PRIMARY KEY (employee_id, location_id),

FOREIGN KEY (employee_id) REFERENCES Employees(employee_id),

FOREIGN KEY (location_id) REFERENCES SiteLocation(location_id)

);

Artist:

CREATE TABLE Artist (

artist_id INT PRIMARY KEY,

artist_name VARCHAR(255) NOT NULL,

date_of_birth DATE NOT NULL,

gender VARCHAR(1) NOT NULL,

CONSTRAINT gender_constraint_violated CHECK (gender in ('M', 'F', 'T'))

);

GetsPaidBy

CREATE TABLE getsPaidBy (

artist_id INT NOT NULL,

company_id INT NOT NULL,

PRIMARY KEY (artist_id, company_id),

FOREIGN KEY (artist_id) REFERENCES Artist(artist_id),

FOREIGN KEY (company_id) REFERENCES SponsoringCompany(company_id)

);

Produces:

CREATE TABLE Produces (

company_id INT NOT NULL,

movie_id INT NOT NULL,

PRIMARY KEY (company_id, movie_id),

FOREIGN KEY (company_id) REFERENCES SponsoringCompany(company_id),

FOREIGN KEY (movie_id) REFERENCES Movie(movie_id)

);

ActsIn:

CREATE TABLE ActsIn (

movie_id INT NOT NULL,

artist_id INT NOT NULL,

PRIMARY KEY (movie_id, artist_id),

FOREIGN KEY (movie_id) REFERENCES Movie(movie_id),

FOREIGN KEY (artist_id) REFERENCES Artist(artist_id)

);

Individual Contribution:

Identified Functional Dependencies in Movie and Songs table.

Designed Movie and Songs tables in 2NF.

Modified Movie and Songs tables in 3NF.

Modified Movie and Songs tables to BCNF.

Found Dependency preserving and loss less join in Movie and Songs tables.

Created table for Movie and Songs.

