
CSCE 5350.001

Fundamentals of Database Systems

Project Part 4

Shaik Mohammad Afroz

11660362

shaikmohammadafroz@my.unt.edu

Latest Schema

Movie (movie_id, title, avg_rating, date_of_release, duration, script_inventory_id, director,

in_production)

Songs (song_id, song_name, singer_name, movie_id)

Genre (genre_id, genre_name)

TaggedWith (movie_id, genre_id)

SiteLocation (location_id, location_name, address)

ShotAt (location_id, movie_id)

Building (building_id, building_name, purpose, location_id)

PostProductionDoneIn (movie_id, building_id)

Employees (employee_id, employee_name, designation, phone_number, hourly_pay,

employee_level)

Manages (employee_id, location_id)

Payroll (payroll_id, employee_id, hours_worked, date)

SponsoringCompany (company_id, company_name, num_movies_produced)

getsPaidBy (artist_id, company_id)

Produces (company_id, movie_id)

Artist (artist_id, artist_name, date_of_birth, gender, address)

MovieScriptInventory (script_inventory_id, script_inventory_name)

ActsIn(movie_id, artist_id)

Rating(rating_id, movie_id, rating)

Additional Assumptions:

• Movie has avg_rating which we calculate from Rating table after insertion in Rating

table.

• Employee has employee level which determines the hourly pay, every time an update

on employee triggers check of employee level to change hourly pay.

• Sponsoring company table has num_movies_produced attribute that tracks number of

movies produced by that company. This is going to be updated whenever a record is

inserted in Produces table.

Stored Functions:

1. Get total payroll amount: Calculates employee payroll amount by multiplying hours

worked with hourly pay.

drop function get_total_payroll_amount;

CREATE OR REPLACE FUNCTION get_total_payroll_amount(

 eid IN EMPLOYEES.employee_id%type,

 start_date IN PAYROLL.work_date%type,

 end_date IN PAYROLL.work_date%type

)

RETURN NUMBER

IS

total_pay NUMBER;

BEGIN

 SELECT SUM(p.hours_worked*e.hourly_pay) INTO total_pay

 FROM Payroll p, Employees e

 WHERE p.employee_id = eid

 AND p.employee_id = e.employee_id

 AND p.work_date BETWEEN start_date AND end_date ;

 dbms_output.put_line(total_pay);

 RETURN total_pay;

END;

/

VAR TOTAL NUMBER;

EXECUTE :TOTAL:=get_total_payroll_amount(109, '01-MAR-22', '03-NOV-22');

print TOTAL;

2. Get total number of songs: Returns total number of songs using the movie id sent in

function call.

DROP FUNCTION GET_TOTAL_NUMBER_OF_SONGS;

CREATE OR REPLACE FUNCTION get_total_number_of_songs(

 mid IN MOVIE.movie_id%type

)

RETURN NUMBER

IS

SONGS_COUNT NUMBER;

BEGIN

 SELECT COUNT(*) INTO SONGS_COUNT

 FROM Songs s

 WHERE s.movie_id = mid;

 RETURN SONGS_COUNT;

END;

/

VAR song_count NUMBER;

EXECUTE :song_count:=get_total_number_of_songs(1);

print song_count;

3. Get movie shot locations: Returns shot locations concatenated into single string using

comma separator with the help of movie id sent in function call.

DROP FUNCTION GET_MOVIE_SHOT_LOCATIONS;

CREATE FUNCTION GET_MOVIE_SHOT_LOCATIONS(

 MID IN MOVIE.MOVIE_ID%TYPE

)

RETURN VARCHAR2

IS

LOCATIONS VARCHAR2(1000);

BEGIN

 SELECT

 LISTAGG(LOCATION_NAME,', ') INTO LOCATIONS

 FROM

 SITELOCATION

 INNER JOIN SHOTAT

 ON SITELOCATION.LOCATION_ID = SHOTAT.LOCATION_ID

 WHERE

 SHOTAT.MOVIE_ID = MID;

 RETURN LOCATIONS;

END;

/

VAR location VARCHAR2(1000);

EXECUTE :location:=GET_MOVIE_SHOT_LOCATIONS(1);

print location;

4. Get movies produced: returns movies produces concatenated into single string using the

company id sent in function call.

DROP FUNCTION get_movies_produced;

CREATE FUNCTION GET_MOVIES_PRODUCED(

 CID INT

) RETURN VARCHAR2 IS

 MOVIES_PRODUCED VARCHAR2(1000);

BEGIN

 SELECT

 LISTAGG(M.TITLE,

 ', ') INTO MOVIES_PRODUCED

 FROM

 PRODUCES P,

 MOVIE M

 WHERE

 COMPANY_ID = CID

 AND P.MOVIE_ID = M.MOVIE_ID;

 RETURN MOVIES_PRODUCED;

END;

/

VAR movies VARCHAR2(1000);

EXECUTE :movies:=GET_MOVIES_PRODUCED(2);

print movies;

5. Songs in movies with genre: Returns songs list concatenated using the genre name sent to

the function. Uses genre name to gather movies tagged to it. And using the movie ids forms a

list to concatenate and return as result.

DROP FUNCTION songs_in_movies_with_genre;

-- Return songs that are present in movies with genre 'gn'

CREATE FUNCTION songs_in_movies_with_genre(

 gn Genre.genre_name%type

)

RETURN VARCHAR2 IS

songs_list VARCHAR2(2000);

BEGIN

 SELECT

 LISTAGG('->'||s.song_name||' from movie '||m.title, chr(10)) INTO songs_list

 FROM

 MOVIE m,

 Genre g,

 Songs s,

 TaggedWith t

 WHERE

 g.genre_name = gn

 AND g.genre_id = t.genre_id

 AND t.movie_id = m.movie_id

 AND m.movie_id = s.movie_id;

 RETURN songs_list;

END;

/

VAR songs_list VARCHAR2(1000);

EXECUTE :songs_list:=songs_in_movies_with_genre('Romance');

print songs_list;

Stored Procedures:

1) Get artist by movie: This procedure takes the movie id and gives the related artist names

that are associated with that movie.

Create or replace procedure get_artist_by_movie(

v_movie_id in Movie.movie_id%type

)

Is

artist_names varchar2(2000);

Begin

Select listagg(a.artist_name,',') into artist_names

From Artist a, ActsIn ai

Where ai.movie_id = v_movie_id and ai.artist_id = a.artist_id;

dbms_output.put_line('Artists acted in movie with id '|| v_movie_id|| ': ' || artist_names);

END;

/

2) Get building by location: This stored procedure takes the input as location id and gives the

names of the buildings associated with that location id.

Create or replace procedure get_building_by_location(

v_location_id in SiteLocation.location_id%type

)

is

v_building_name varchar2(255);

Begin

Select listagg(building_name,',') into v_building_name

from Building b, SiteLocation s1

Where s1.location_id = v_location_id and b.location_id = s1.location_id;

dbms_output.put_line('Building name' || v_building_name);

END;

/

3) Get genre name: This stored procedure takes the genre id and gives the names of the genre

associated with it.

create or replace procedure get_genre_name(

v_genre_id in Genre.genre_id%type

)

Is

v_genre_name Genre.genre_name%type;

Begin

select genre_name into v_genre_name

from Genre

where v_genre_id = genre_id;

dbms_output.put_line('Genre Name :' || v_genre_name);

END;

/

4) Get Song Name: This procedure takes input as song id and gives the songs names that are

related to it.

create or replace procedure get_song_name(

v_song_id in Songs.song_id%type

)

Is

 v_song_name songs.song_name%type;

BEGIN

select song_name into v_song_name

from Songs

where song_id = v_song_id;

dbms_output.put_line('Song Name :' || v_song_name);

END;

/

5) Get payroll by employee: This procedure takes the employee id as input from the payroll

table and gives the sum of the hours that employee worked.

Create or replace procedure get_payroll_by_employee(

v_employee_id in Employees.employee_id%type

)

Is

v_hours_worked number;

Begin

Select sum(hourly_worked) into v_hours_worked

From Payroll p

Where p.employee_id = v_employee_id;

dbms_output.put_line(' Employees hours worked with’ || v_employee_id|| ‘: ‘ ||

v_hours_worked || ‘hrs.’);

END;

/

Triggers:

1) Update movie average rating: This trigger will update the average rating of the movie and if we

give the movie id then it will display the details of movie.

CREATE OR REPLACE TRIGGER update_movie_avg_rating

AFTER INSERT ON Rating

DECLARE average_rating NUMBER;

BEGIN

 SELECT avg(rating) INTO average_rating

 FROM Rating R

 WHERE R.movie_id = movie_id;

 UPDATE Movie m SET m.avg_rating = average_rating WHERE m.movie_id = movie_id;

END;

/

2) Update employee hourly pay: This trigger will update the employee level and the hourly pay of the

employee and gives the updates details of employees.

SELECT EMPLOYEE_LEVEL, HOURLY_PAY FROM EMPLOYEES WHERE EMPLOYEE_ID

= 101;

CREATE OR REPLACE TRIGGER update_employee_hourly_pay

BEFORE UPDATE ON Employees

FOR EACH ROW

BEGIN

IF :NEW.employee_level = 'Manager' THEN

:NEW.hourly_pay := 50;

ELSIF :NEW.employee_level = 'Assistant Manager' THEN

:NEW.hourly_pay := 30;

ELSIF :NEW.employee_level = 'Production Assistant' THEN

:NEW.hourly_pay := 15;

END IF;

END;

/

UPDATE Employees SET employee_level = 'Assistant Manager' WHERE employee_id = 101;

SELECT EMPLOYEE_LEVEL, HOURLY_PAY FROM EMPLOYEES WHERE EMPLOYEE_ID

= 101;

3) Update movie count: This trigger will update the movie count based on company id from

the sponsoring company table and displays all the details of it.

SELECT * FROM SponsoringCompany WHERE COMPANY_ID = 1;

CREATE OR REPLACE TRIGGER update_movie_count

BEFORE INSERT ON Produces

FOR EACH ROW

BEGIN

 UPDATE SponsoringCompany SET num_movies_produced =

 (SELECT COUNT(*)+1

 FROM PRODUCES

 WHERE company_id = :NEW.company_id)

 WHERE company_id = :NEW.company_id;

END;

/

INSERT INTO Produces (company_id, movie_id) VALUES (1, 12);

SELECT * FROM SponsoringCompany WHERE COMPANY_ID = 1;

Package:

1)

CREATE OR REPLACE PACKAGE MOVIE_DB AS

 FUNCTION SONGS_IN_MOVIES_WITH_GENRE(

 GN GENRE.GENRE_NAME%TYPE

) RETURN VARCHAR2;

 PROCEDURE GET_BUILDING_BY_LOCATION(

 V_LOCATION_ID IN SITELOCATION.LOCATION_ID%TYPE

);

END;

/

SHOW ERRORS;

CREATE OR REPLACE PACKAGE BODY MOVIE_DB AS

 FUNCTION SONGS_IN_MOVIES_WITH_GENRE(

 GN GENRE.GENRE_NAME%TYPE

) RETURN VARCHAR2 IS

 SONGS_LIST VARCHAR2(2000);

 BEGIN

 SELECT

 LISTAGG('->'||S.SONG_NAME||' from movie '||M.TITLE,

 CHR(10)) INTO SONGS_LIST

 FROM

 MOVIE M,

 GENRE G,

 SONGS S,

 TAGGEDWITH T

 WHERE

 G.GENRE_NAME = GN

 AND G.GENRE_ID = T.GENRE_ID

 AND T.MOVIE_ID = M.MOVIE_ID

 AND M.MOVIE_ID = S.MOVIE_ID;

 RETURN SONGS_LIST;

 END;

 PROCEDURE GET_BUILDING_BY_LOCATION(

 V_LOCATION_ID IN SITELOCATION.LOCATION_ID%TYPE

) IS

 V_BUILDING_NAME VARCHAR2(255);

 BEGIN

 SELECT

 LISTAGG(BUILDING_NAME,

 ',') INTO V_BUILDING_NAME

 FROM

 BUILDING B,

 SITELOCATION S1

 WHERE

 S1.LOCATION_ID = V_LOCATION_ID

 AND B.LOCATION_ID = S1.LOCATION_ID;

 DBMS_OUTPUT.PUT_LINE('Building name'

 || V_BUILDING_NAME);

 END;

END;

/

SHOW ERRORS;

Individual Contribution:

Created package and package body.

Created Function to return payroll amount of employee based on employee id, start_date, and

end_date.

Create Procedure to print artists in movie using movie id.

Created Trigger to calculate average rating after inserting into Rating table and assigning

movie with average rating.

Created Rating table schema to accommodate ratings for movies.

