CSCE 5350.001
Fundamentals of Database Systems

Project Part 3

Naga Vara Pradeep Yendluri
11646461

nagavarapradeepyendluri@my.unt.edu

Project Description:

The Movie Producer Management System is an application that is being developed for a
movie production company like Universal Studios. The system is designed to store and
manage information about the company's movies, artists, songs, employees and various other
aspects of the movie production process. The system will store information about the
producing site locations, movie-script-inventory, sponsoring companies, employee data, and
payroll. It will also store information about the artists and the movies they have worked on, as
well as the various aspects of the movie production process, such as soundtracks, awards, and
more.

We have Identified the following entities and relations for the movie producer management
system.

1. Movies: The entity 'Movies' provides information about the different movies
produced by the company. It has 6 attributes, including the movie id, movie title,
release date, duration, in production and director. This entity is important for keeping
track of the different movies produced by the company and the information related to
each movie.

2. Artists: The entity 'Artists’ provides information about the actors involved in the
movies. It has 5 attributes, including the actors id, actors name, actors date of birth,
address and age. This entity is important for maintaining the information about the
actors, their age and date of birth, which is required for casting actors for various
roles.

3. Genre: The entity 'Genre' provides information about the genre to which the movie
belongs. It has 2 attributes, genre id, and genre name. This entity is important for
categorizing the movies into different genres, which helps in better management and
analysis of the movies.

4. Sponsoring Companies: The entity 'Sponsoring Companies' provides information
about the companies that sponsor the movies. It has 4 attributes, including sponsor id,
sponsor name, movie id and movie sponsored. This entity is important for tracking the
sponsorship deals and the companies that sponsor the movies.

5. Site Locations: The entity 'Site Locations' provides information about the different
producing sites, including their addresses and buildings. It has 4 attributes, including
location id, name, address, and building names. This entity is important for tracking

mailto:nagavarapradeepyendluri@my.unt.edu

10.

the different producing sites and their details, which is essential for managing the
movie production process.

Buildings: The entity 'Buildings' provides information about the buildings in each
producing site. It has 3 attributes, including Building id, name, and type of building.
This entity is important for tracking the different types of buildings present in the
producing sites, which is essential for managing the resources and maintenance of the
buildings.

Movie Script Inventory: The entity ‘Movie Script Inventory' provides information
about the movie scripts. It has 5 attributes, including script id, name, movie id, author,
and publication date. This entity is important for tracking the different movie scripts
and the information related to each script.

Employee: The entity 'Employee’ provides information about the employees of the
company. It has 5 attributes, including employe id, name, job title, hourly pay and
phone. This entity is important for maintaining the information about the employees,
their job title and contact information, which is required for managing the human
resources of the company.

Payroll: The entity 'Payroll' provides information about employee payroll data. It has
5 attributes, including employee id, hours worked, joining date, work date, etc. This
entity is important for tracking the payroll information of the employees, which is
essential for managing the finances of the company.

Songs: The entity 'Songs' provides information about different soundtracks used in
the movies. It has 4 attributes, including song id, track title, movie id, and singer
name. This entity is important for tracking the different soundtracks used in the
movies and the information related to each soundtrack.

Binary Relations:

¢ One to One relation:

1.

Every Employee will only one payroll associated to them. So the relation between
employee and payroll is one to one

Each Movie will have only one script associated with. Hence, the relation between
movies and movie script inventory will also be one to one.

* One to Many relation:

1.

2.

Each movie can have multiple songs/soundtracks in it and inversely there can be
multiple songs in a movie. So, the relation between songs and movies is one to many.
Every site location can have multiple buildings in them, and inversely multiple
buildings can be located at a single location. So, the relation between these two
entities will be one to many relation.

* Many to Many relation:

1.

Each movie can have many artists performing in it and inversely many actors can act
in many different movies. Hence, the relation between movies and artists will be
many to many.

Many Sponsoring companies can sponsor for many movies in this system. Inversely,
many movies can get sponsorship from different sponsoring companies. Hence, the
relation between these two entities is many to many relation.

3. Many movies can be shot at different locations and inversely many locations can
concurrently host shootings for many movies in different buildings so the relation
between these two entities will also be many to many relation.

Additional Assumptions:

1. Each movie has one director.

Each artist has an address.

Payroll has number of hours worked per day.

Each movie has in_production flag (values ‘Y’, ‘N”) to specify if its in production and

not yet released.

5. Salary column is changed to hourly _pay and moved to Employees table to decrease
redundancy.

6. Hours_worked column in Payroll has constraint of 0 to 12hours per day.

7. Work date in payroll table holds the date information on which day the employee
worked.

o

ER Relations:

Relations transformed to schema.

Movie (movie_id, title, rating, date_of release, duration, script_inventory _id, director,
in_production)

Songs (song_id, song_name, singer_name, movie_id)

Genre (genre_id, genre_name)

TaggedWith (movie_id, genre_id)

SiteLocation (location_id, location_name, address)

ShotAt (location_id, movie_id)

Building (building_id, building_name, purpose, location_id)
PostProductionDoneln (movie_id, building_id)

Employees (employee_id, employee _name, designation, phone_number, hourly pay)
Manages (employee_id, location_id)

Payroll (payroll_id, employee _id, hours_worked, date)
SponsoringCompany (company_id, company_name)
getsPaidBy (artist_id, company_id)

Produces (company_id, movie_id)

Avrtist (artist_id, artist_name, date_of birth, gender, address)

MovieScriptinventory (script_inventory _id, script_inventory _name)

ActsIin(movie_id, artist_id)

Queries:

1. List the total number of movies group by director released after June 2nd, 2021.
SELECT COUNT(*) AS TOTAL_MOVIES, DIRECTOR

FROM MOVIE M

WHERE M.DATE_OF_RELEASE > TO_DATE('2021-06-02', 'yyyy-mm-dd')
GROUP BY DIRECTOR,;

SELECT COUNT(*) AS TOTAL_MOVIES, DIRECTOR

FROM MOVIE M

WHERE M.DATE_OF_RELEASE > TO_DATE('2021-06-02', 'yyyy-mm-dd')
GROUP BY DIRECTOR;

TOTAL_MOVIES

George Lucas

2. List movie title(s) that have all artists in their movie with address in Texas.
SELECT m.title
FROM Movie m
INNER JOIN Actsln ai ON m.movie_id = ai.movie_id
INNER JOIN Artist a ON ai.artist_id = a.artist_id
WHERE a.address LIKE '%Texas%'
GROUP BY m.movie_id, m.title
HAVING COUNT(DISTINCT a.artist_id) = (
SELECT COUNT/(DISTINCT artist_id)
FROM ActsIn
WHERE movie_id = m.movie_id

);

SQL> SELECT m.title
FROM Movie m
INNER JOIN ActsIn ai ON m.movie_id = ai.movie_id
INNER JOIN Artist a ON ai.artist_id = a.artist_id
WHERE a.address LIKE '%Texas%'
GROUP BY m.movie_id, m.title
HAVING COUNT(DISTINCT a.artist_id) = (
SELECT COUNT(DISTINCT artist_id)
FROM ActsIn
WHERE movie_id = m.movie_id

2
3
u
5
6
7
8
9
0
1

Godfather

Social Network

Dark Knight

Lord of the Rings: The Return of the King
Titanic
The Godfather: Part II

6 rows selected.

3. Find the name of the employee(s) that had worked the most hours on November 3, 2022
SELECT E.EEMPLOYEE_NAME
FROM EMPLOYEES E, PAYROLL P
WHERE E.EMPLOYEE_ID =P.EMPLOYEE_ID
AND P.HOURS_WORKED = (SELECT MAX(HOURS_WORKED)
FROM EMPLOYEES E1, PAYROLL P1
WHERE E1.EMPLOYEE_ID =P1.EMPLOYEE_ID
AND WORK_DATE = TO_DATE('2022-11-03', 'yyyy-mm-dd"));

SQL> SELECT E.EMPLOYEE_NAME
FROM EMPLOYEES E, PAYROLL P
3 WHERE E.EMPLOYEE_ID = P.EMPLOYEE_ID
4 AND P.HOURS_WORKED = (SELECT MAX(HOURS_WORKED)
f5) FROM EMPLOYEES E1, PAYROLL P1
6 WHERE E1.EMPLOYEE_ID = P1.EMPLOYEE_ID
7

AND WORK_DATE = TO_DATE('2022-11-03', 'yyyy-mm—dd'));

EMPLOYEE _NAME

Emily Johnson

4. List the movies that currently are in production.
SELECT M.TITLE
FROM MOVIE M

WHERE M.IN_PRODUCTION ="Y";

SQL> SELECT M.TITLE
2 FROM MOVIE M
3 WHERE M.IN_PRODUCTION = 'Y'

Pulp Fiction
The Matrix

Star Wars: Episode IV — A New Hope

The Lion King

The Social Network

The Departed

The Shawshank Redemption II

The Lord of the Rings: The Fellowship of the Ring

8 rows selected.

5. Print the payroll from March 4, 2022 to March 10, 2022 displaying employee name, hours
worked and total salary for all employees

SELECT e.employee_name,
SUM(p.hours_worked) AS total_hours_worked,
SUM(p.hours_worked * e.hourly_pay) AS total_salary
FROM Employees e, Payroll p
WHERE e.employee_id = p.employee_id

AND p.WORK_date BETWEEN TO_DATE('2022-03-04', 'yyyy-mm-dd’) and
TO_DATE('2022-03-10', 'yyyy-mm-dd")

GROUP BY e.employee_name;

SQL> SELECT e.employee_name,
p) SUM(p.hours_worked) AS total_hours_worked,
3 SUM(p.hours_worked * e.hourly_pay) AS total_salary
4 FROM Employees e, Payroll p
5 WHERE e.employee_id = p.employee_id
6
7

AND p.WORK_date BETWEEN TO_DATE('2022-083-04', 'yyyy-mm-dd') and TO_DATE('2022-03-10', 'yyyy-mm-dd')
GROUP BY e.employee_name;

EMPLOYEE_NAME

David Kim

Jessica Lee

Jason Lee

EMPLOYEE_NAME

Alex Lee

Alice Kim

Brian Kim

Cathy Lee

Daniel Lee

9 rows selected.

6. Design a delete statement to delete employees working less than 5 hours from March 4,
2023 to March 10, 2023.

DELETE FROM EMPLOYEES E

WHERE E.EMPLOYEE_ID = (SELECT E1.EMPLOYEE_ID FROM EMPLOYEES E1,
PAYROLL P

WHERE (E1.EMPLOYEE_ID = P.EMPLOYEE_ID)

AND (P.WORK_DATE BETWEEN TO_DATE('2022-03-04", 'yyyy-mm-dd')
and TO_DATE('2022-03-10', 'yyyy-mm-dd))

AND P.HOURS_WORKED <5);

SQL> INSERT INTO Payroll (payroll_id, hourly_pay, employee_id, hours_worked, work_date) VALUES (36, 56.00, 114, 4.6, TO_DATE('2022-83-88', 'yyyy-mm—dd'));

1 row created.

SQL> DELETE FROM EMPLOYEES E
2 WHERE E.EMPLOYEE_ID = (SELECT E1.EMPLOYEE_ID FROM EMPLOYEES E1, PAYROLL P
WHERE (E1.EMPLOYEE_ID = P.EMPLOYEE_I
AND (P. WOl TE BETWEEN TO_DATE(83-04', 'yyyy-mm-dd') and TO_DATE('2822-83-18', 'yyyy-mm—dd'))
AND P.HOURS_WORKED < 5 J;

1 row deleted.

7. Design an update statement to give a 23% salary raise to employees working more than 5
hours from March 4, 2023 to March 10, 2023.

Employees salary before update:

SQL> SELECT E1.EMPLOYEE_ID, E1.HOURLY_PAY FROM EMPLOYEES E1, PAYROLL P1
2 WHERE (E1.EMPLOYEE_ID = P1.EMPLOYEE_ID)
3 AND (WORK_DATE BETWEEN TO_DATE('2022-03-04', 'yyyy-mm-dd') and TO_DATE('2022-03-10', 'yyyy-mm-dd'))
] AND P1.HOURS_WORKED > 5;

EMPLOYEE_ID HOURLY_PAY

9 rows selected.

Update:
UPDATE EMPLOYEES E
SET E.hourly_pay =0.23 * EEHOURLY_PAY+E.HOURLY_PAY

WHERE E.EMPLOYEE_ID IN (SELECT E1.EMPLOYEE_ID FROM EMPLOYEES E1,
PAYROLL P1

WHERE (E1.EMPLOYEE_ID = P1.EMPLOYEE_ID)

AND (WORK_DATE BETWEEN TO_DATE('2022-03-04",
'yyyy-mm-dd') and TO_DATE('2022-03-10", 'yyyy-mm-dd'))

AND P1.HOURS_WORKED > 5);

SQL> UPDATE EMPLOYEES E
2 SET E.hourly_pay = ©.23 * E.HOURLY_PAY+E.HOURLY_PAY
WHERE E.EMPLOYEE_ID IN (SELECT E1.EMPLOYEE_ID FROM EMPLOYEES E1, PAYROLL P1

3
4 WHERE (E1.EMPLOYEE_ID = P1.EMPLOYEE_ID)

5 AND (WORK_DATE BETWEEN TO_DATE('2022-83-04', 'yyyy-mm—dd') and TO_DATE('2022-03-10', 'yyyy-mm—dd'))
6 AND P1.HOURS_WORKED > 5);

9 rows updated.

After Update:

SQL> SELECT E1.EMPLOYEE_ID, E1.HOURLY_PAY FROM EMPLOYEES E1, PAYROLL Pl

2 WHERE (E1.EMPLOYEE_ID = P1.EMPLOYEE_ID)

3 AND (WORK_DATE BETWEEN TO_DATE('2022-03-084', 'yyyy-mm-dd') and TO_DATE('2022-83-18', 'yyyy-mm-dd'))
4 AND P1.HOURS_WORKED > 5

EMPLOYEE_ID HOURLY_PAY

.2
.5
.8
.8
.5
.5
.5
]
.8

9 rows selected.

10 Queries:

1) Query to retrieve script name and movie name of films, duration, and date of release with
rating greater than or equal to 9 and displays result in descending order.

B saLPlus

> SELECT m.title, m.rating, m.date_of_release, m.duration, s.script_inventory_name
FROM Mov

3 JOIN
WHERE

SCRIPT_INVENTOR

The Shawshank Red
9 1u-SEP-!
The Shawshank Inventory

The Godfather
9 2u-MAR-72
The Avengers Inventory

TITLE

e Shawshank Redemption II
9 20-SEP-96 142
Ryan Inventory

The Lord of the Rings: The Return of the King
9 31-DEC-22 201

2) Query to display the song details like song name, movie name, movie release date and
singer name of movie with id = 3.

SELECT s.song_name, s.singer_name, m.title, m.date_of_release
FROM Songs s, Movie m

where s.movie_id = m.movie_id

and m.movie_id = 3;

Bohemian Rhapsody
Queen

The Dark Knight
14-JUL-08

SONG_NAME

Livin on a Prayer
Bon Jovi

The Dark Knight
14-JUL-08

3) Query to Display the genre associated with the movie titled “The Lion King”

SELECT m.title AS movie_title, g.genre_name AS genre_name
FROM Movie m

JOIN TaggedWith tw ON m.movie_id = tw.movie_id

JOIN Genre g ON tw.genre_id = g.genre_id

WHERE m.title = 'The Lion King';

MOVIE_TITLE

The Lion King
Action

4) Query to display the building name, Location name and address of building that is used for
Visual effects purpose

E saLpius

sl.location_name AS location_name, sl.address AS location_address

- t. ON b.location_id = sl.location_id
4 WHERE b.purpose = 'visual effects';

BUILDING_NAME

LOCATION_NAME

LOCATION_ADDRE.

DreamWorks

Central Par

123 Main St, Mew York, NY 18019

Walt Disney Animation Studios
Lincoln Memorial
2 Lincoln Memorial Cir NW, Washington, DC 28037

IN

L

LOCATION_ADDRESS

Industrial Light and Magic
Golden Gate Bridge
Golden Gate Bridge, San Francisco, CA 98129

Rhythm and Hues Studios
The Bean

5) Query to display movie name, shooting location and address of movies which were shot at
location Niagara falls

SELECT m.title AS movie_title, sl.location_name AS location_name, sl.address AS location_address
FROM ShotAt sa
JOIN Movie m ON sa.movie_id = m.movie_id
JOIN SiteLocation sl ON sa.location_id sl.location_id
WHERE sl.location_name = 'Niagara Falls';
MOVIE_TITLE
LOCATION_NAME
LOCATION_ADDRESS

The Lord of the Rings: The Return of the King

Niagara Falls
Niagara Falls State Park, Niagara Falls, NY 14383

The Lion King

Niagara Falls

Niagara Falls, ON L2G 3Y9, Canada
MOVIE_TITLE

LOCATION_NAME

LOCATION_ADDRESS

6) Query to display the Movie title, Post production building and address of movies with
rating above 8 and sorted in descending order via release dates

€ satplus

> SELECT Movie.title, Building.building_name, SitelLocation.location_name
FROM PostProductionDoneIn
JOIN Movie ON PostProductionDoneIn.mov = Movie.movie_id
JOIN Building ON PostProductionDoneIn.building_id = Building.building_id
JOIN SitelLocation ON Building.location_id = SiteLocation.location_id
WHERE M, .rating > 8
ORDER BY Movie.date_of_release DESC;

N0 E WA

The Lord of th
Fox Studios
Niagara Falls

e Dark Knight
dios
e Bridge

7) Query to display the details of employee with designation of manager whose hourly pay is
greater than the average pay of employee with designation choreographer and security

SELECT employee_id, employee_name, designation, phone_number, hourly_pay
2 FROM Employees
3 WHERE designation = 'manager'
4 AND hourly_pay >= (SELECT AVG(hourly_pay) FROM Employees WHERE designation IN ('choreographer', 'security'))
5 ORDER BY hourly_pay DESC, employee_name ASC;

EMPLOYEE_ID

Cathy Lee
manager
U567809876

& saLpius

SQL> SELECT p id, e. _name, SUM(p.ho
2 FROM Pay:
3 JOIN Employees e ON p.employee_i mployee_id
4 WHERE EXTRACT(MONTH FROM p.work_das
5 OUP BY p.employee_id, e.empl

EMPLOYEE_ID

EMPLOYEE_NAME

102

Jane Smith
900

EMPLOYEE_ID

E NAME

TOTAL_PAYMENT

9) Query to display the Artists names and movie title of films released in the month of march

SQL> SELECT DISTINCT a.artist_name, m.title
FROM ActsIn ai
INNER JOIN Artist a ON ai.artist_id =
INNER JOIN Mowie m ON ai.mowvie_id = m.
WHERE EXTRACT(MONTH FROM m.date_of_relea
ORDER BY a.artist_name ASC;

a.artist_id

ARTIST_NAME

Anne Hathaway
The Godfather

Heira Hnightley
The Matrix

Leonarde DiCaprio
The Matrix

ARTIST_NAME

Meryl Streep
The Godfather

10) Query to display the movie title, date of release and director name of films that were
produced by the Universal Pictures.

SELECT m.title AS movie_title, m.date_of_release AS release_date, m.director AS movie_director
2 FROM Produces p
3 JOIN Movie m ON p.movie_id = m.movie_id
4 JOIN SponsoringCompany sc ON p.company_id = sc.company_id
5 WHERE sc.company_name = 'Universal Pictures';

MOVIE_TITLE

The Shawshank Redemption
14-SEP-94
Frank Darabont

Inception
08-JUL-10
Christopher Nolan

MOVIE_TITLE

Updates:
1)Artist table

UPDATE Artist SET artist_name = 'George Timothy Clooney’, address = 'Los Angeles,
California' WHERE artist_name = 'George Clooney’,

SQL> UPDATE Artist SET artist_name = 'George Timothy Clooney', address = 'Los Angeles, California' WHERE artist_name = 'George Clooney"';

1 row updated.

SQL> SELECT * FROM ARTIST,

Updated artist name and address

ARTIST_ID

George Timothy Clooney
06—-MAY-61 M
Los Angeles, California

2)Movie table:

UPDATE Movie SET date_of release = TO_DATE('2022-12-31", 'yyyy-mm-dd') WHERE
movie_id = 5;

sQL Plus

260 rows selected.

SQL> UPDATE Movie SET date_of_release = TO_DATE('2022-12-31', 'yyyy-mm-dd') WHERE movie_id =
1 row updated.

SQL> select » from Movie;

MOVIE_ID

The Shamwshank Redemption
9 1u4-SEP-94

MOVIE_ID

RATING DATE_OF_R DURATION SCRIPT_INVENTORY_ID

Frank Darabont
N

3) Employees table:

UPDATE Employees SET designation = 'sound engineer’, hourly _pay = 75.00 WHERE
employee_id = 107;

sQL Plus

SQL> UPDATE Employees SET designation = 'sound engineer', hourly_pay = 75.80 WHERE employee_id = 187;
1 row updated.
SQL> select = from Employees;

EMPLOYEE_ID

DESIGNATION

John Doe
electrician
123u567898

EMPLOYEE_ID

EMPLOYEE_NAME

DE!

PHONE_NUMB HOURLY_PAY

Jane Smith
makeup artist
2345678981

4)SponsoringCompany Table:
UPDATE SponsoringCompany SET company_name = 'Disney' WHERE company_id = 3;

saL Plus

20 rows selected.

SQL> UPDATE SponsoringCompany SET company_name = 'Disney' WHERE company_id = 3;

1 row updated.
SQL> select * from SponsoringCompany

COMPANY_ID

Universal Pictures

2
wWarner Bros. Pictures
3

Disney

COMPANY_ID

Paramount Pictures

5
26th Century Fox

6
Sony Pictures

5)Manages table:

UPDATE Manages SET location_id = 10 WHERE employee_id = 101 AND location_id = 2;

B satrius

SQL> UPDATE Manages SET location_id = 1@ WHERE employee_id = 101 AND location_id = 2;
1 row updated.
sSQL> select * from Manages;

EMPLOYEE_ID LOCATION_ID

102
103
1e4
1e5
106
107
1e8
109
110
101

EMPLOYEE_ID

103
1e4q
105
106
107
108
109
118

20 rows selected.

6)Buildings table:

UPDATE Building SET building_name = 'RRR studio', purpose = 'production' WHERE building_id =
1;

B satpius

SQL> UPDATE Building SET building_name = 'RRR studio', purpose = 'production’ WHERE building_id = 1;
1 row updated.

SQL> select * from Building

BUILDING_ID

BUILDING_NAME

PURPOSE

1
RRR studio
production

Sony Pictuies
studio
BUILDING_ID
BUILDING:;;ME
PURPOSE

Pinewood Studios
studio

g
Warner Bros. Studios

Deletion:
1)Songs table:
DELETE FROM Songs WHERE song_name = ‘Smells Like Teen Spirit’;

sQL Plus

SQL> DELETE FROM Songs WHERE song_name = 'Smells Like Teen Spirit';
1 row deleted.
SQL> select * from Songs;

SONG_ID

SINGER_NAME

MOVIE_ID

1
Shape of You
Ed Sheeran

1

SONG_ID

SONG_NAME

SINGER_NAME

Billie Jean
Michael Jackseon
2

-k O CBEBEEUE 0@ = ~esrm YINe
2)Buildings table:
DELETE FROM Building WHERE building_id = 1;

sQL Plus.

SQL> DELETE FROM Building WHERE building_id
1 row deleted.

SQL> select * from Building;

BUILDING_ID

BUILDING_NAME

PURPOSE LOCATION_ID

2
Sony Pictures
studio

3
Pinewood Studios
studio

BUILDING_ID

BUILDING_NAME

PURPOSE LOCATION_ID

Warner Bros. Studios
studio

5
Fox Studios

BUILDING_ID

3)Actsin Table:

DELETE FROM Actsin WHERE movie_id = 12;

saL plus

SQL> DELETE FROM ActsIn WHERE movie_id=12;
1 row deleted.
SQL> select * from ActsIn;

MOVIE_ID ARTIST_ID

4)Genre table:
DELETE FROM Genre WHERE genre_name ='Romance’;

& savLPlus

SQL> DELETE FROM Genre WHERE genre_name = 'Romance’;
1 row deleted.
SQL> select * from Genre;

GENRE_ID

GENRE_NAME

1
Action

Comedy

Drama

GENRE_ID

GENRE_NAME

5
Thriller
Adventure
7
Science Fiction
GENRE_ID

GENRE_NAME

5)Movie table:

DELETE FROM Movie WHERE title = “The Lord of the Rings: The Fellowship of the Ring’;

sQL Plus

> DELETE FROM Movie WHERE title = 'The Lord of the Rings: The Fellowship of the Ring';

hl
The Shawshank Redemption
9 1u-SEP-9U

6)MovieScriptinventory:

DELETE FROM MovieScriptinventory WHERE script_inventory_id = 1 and script_inventory_name
= ‘The Shawshank Inventory’;

& saLPlus

SQL> DELETE FROM MovieScriptInventory WHERE script_inventory id = 1 and script_inventory_name='The Shawshank Inventory';
leted.
SQL> select » from MovieScriptInventory;

SCRIPT_INVENTORY_ID

The Dark Knight

Fiction Inventory

SCRIPT_INVENTORY_ID

sCl

The

Individual Contribution
1. Added director attribute for Movie entity.

2. Wrote query to find the total number of movies group by director released after June 2nd,
2021.

3. Designed and solved query to retrieve script name and movie name of films with rating
greater than or equal to 9 and display result in descending order.

4. Designed and solved query to retrieve the song and singer name of movie with id 3.
5. Wrote and solved query for updating artist name, address using artist_name.

6. Wrote and solved query for deleting song from Songs table using song name.

7. Added hours_worked attribute to Payroll to track hours worked during each date.

8. Added Work date attribute, that tracks hours worked on the recorded date in Payroll table

