CSCE 5350.001
Fundamentals of Database Systems

Project Part 5
Naga Vara Pradeep Yendluri
11646461

nagavarapradeepyendluri@my.unt.edu

Project Description:

The Movie Producer Management System is an application that is being developed for a movie
production company like Universal Studios. The system is designed to store and manage
information about the company's movies, artists, songs, employees, and various other aspects of
the movie production process. The system will store information about the producing site
locations, movie-script-inventory, sponsoring companies, employee data, and payroll. It will also
store information about the artists and the movies they have worked on, as well as the various
aspects of the movie production process, such as soundtracks, awards, and more.

We have ldentified the following entities and relations for the movie producer management
system. We have identified the Functional Dependencies to make the database normalized to
BCNF or 3NF and identified the dependency preserving and lossless join between the tables also
updated the tables accordingly.

1. Movies: The entity 'Movies' provides information about the different movies produced by
the company. It has 6 attributes, including the movie id, movie title, release date, duration,
in production and director. This entity is important for keeping track of the different movies
produced by the company and the information related to each movie.

2. Artists: The entity 'Artists' provides information about the actors involved in the movies.
It has 5 attributes, including the actors id, actors name, actors date of birth, address and
age. This entity is important for maintaining the information about the actors, their age and
date of birth, which is required for casting actors for various roles.

3. Genre: The entity 'Genre' provides information about the genre to which the movie
belongs. It has 2 attributes, genre id, and genre name. This entity is important for
categorizing the movies into different genres, which helps in better management and
analysis of the movies.

4. Sponsoring Companies: The entity 'Sponsoring Companies' provides information about
the companies that sponsor the movies. It has 4 attributes, including sponsor id, sponsor
name, movie id and movie sponsored. This entity is important for tracking the sponsorship
deals and the companies that sponsor the movies.

5. Site Locations: The entity 'Site Locations' provides information about the different
producing sites, including their addresses and buildings. It has 4 attributes, including
location id, name, address, and building names. This entity is important for tracking the
different producing sites and their details, which is essential for managing the movie
production process.

6. Buildings: The entity 'Buildings' provides information about the buildings in each
producing site. It has 3 attributes, including Building id, name, and type of building. This
entity is important for tracking the different types of buildings present in the producing
sites, which is essential for managing the resources and maintenance of the buildings.

7. Movie Script Inventory: The entity 'Movie Script Inventory' provides information about
the movie scripts. It has 5 attributes, including script id, name, movie id, author, and
publication date. This entity is important for tracking the different movie scripts and the
information related to each script.

8. Employee: The entity 'Employee’ provides information about the employees of the
company. It has 5 attributes, including employee id, name, job title, hourly pay and phone.
This entity is important for maintaining the information about the employees, their job title
and contact information, which is required for managing the human resources of the
company.

9. Payroll: The entity 'Payroll' provides information about employee payroll data. It has 5
attributes, including employee id, hours worked, joining date, work date, etc. This entity is
important for tracking the payroll information of the employees, which is essential for
managing the finances of the company.

10. Songs: The entity 'Songs' provides information about different soundtracks used in the
movies. It has 4 attributes, including song id, track title, movie id, and singer name. This
entity is important for tracking the different soundtracks used in the movies and the
information related to each soundtrack.

Latest Schema:

Movie (movie_id, title, avg_rating, date_of release, duration, script_inventory id, director,
in_production)

Songs (song_id, song_name, singer_name, movie_id)
Genre (genre_id, genre_name)

TaggedWith (movie_id, genre_id)

SiteLocation (location_id, location_name, address)

ShotAt (location_id, movie_id)

Building (building_id, building_name, purpose, location_id)
PostProductionDoneln (movie_id, building_id)

Employees (employee_id, employee name, designation, phone_number, hourly_pay,
employee_level)

Manages (employee_id, location_id)

Payroll (payroll_id, employee_id, hours_worked, date)

SponsoringCompany (company_id, company_name, num_movies_produced)
getsPaidBy (artist_id, company _id)

Produces (company_id, movie_id)

Artist (artist_id, artist_name, date_of _birth, gender, address)
MovieScriptinventory (script_inventory id, script_inventory name)
ActsIin(movie_id, artist_id)

Rating(rating_id, movie_id, rating)

Additional Assumptions:

e From the latest schema we got 18 functional dependencies.
e Normalized the tables into 2NF,3NF and BCNF.

Functional dependencies for the database:
Movie: movie_id — title, date of release, duration, script_inventory _id,
director, in_production
MovieRating: movie id — avg rating
Songs: song_id — song name, singer name, movie id
Genre: genre id — genre name
MovieGenre: (movie_id, genre id) — {movie_id, genre id}
SiteLocation: location id — location name, address
MovieLocation: (location_id, movie id) — {location_id, movie id}
Building: building_id — building name, purpose, location_id
MoviePostProduction: (movie id, building id) — {movie id, building_id}
Employees: employee id — employee name, designation, phone number, employee level

EmployeeSalary: employee id — hourly pay

Manages: (employee id, location id) — {employee id, location id}

Payroll: payroll_id — employee id, hours worked, date, hourly pay
SponsoringCompany: company id — company name, num_movies produced
Artist: artist_id — artist_name, date_of birth, gender, address

ArtistCompany: (artist_id, company _id) — {artist id, company id}
MovieScriptInventory: script_inventory id — script_inventory name

ActsIn: (movie id, artist id) — {movie id, artist_id}

From the above functional dependencies, we are taking 12 among them.

Normalization:

e INF:
The tables are in 1INF since they do not have repeating groups or multivalued attributes.
o 2NF:
Movie:
Movie: movie id — title, date_of release, duration, script_inventory_id, director, in_production
Candidate key, prime attributes = { movie_id }
Non — prime attributes = { in_production }

Since, both the location_name and address are fully dependent on location_id. There are no
partial dependencies, hence it is in 2NF.

Songs:

song_id — song name, singer name, movie id

Candidate key, prime attributes = { song_id }

Non — prime attributes = { song_name, singer_name, movie_id }

All the non — prime attributes are fully dependent on candidate key (song_id). So, it is in 2NF
Genre:

genre id — genre name

Candidate key, prime attributes = { genre_id }

Non — prime attributes = { genre_name }

Since, the FD consists of only one attribute on both sides, so it is trivially in 2NF.
Site location:

location_id — location name, address

Candidate key, prime attributes = { location_id }

Non — prime attributes = { location_name, address }

All the non—prime attributes are fully dependent on the candidate key this is in 2NF.
Payroll:

payroll id — employee id, hours worked, date, hourly pay

Candidate key, prime attributes = { payroll_id }

Non — prime attributes = { employee_id, hours_worked, date, hourly _pay }

All the non-prime attributes are fully dependent on primary key it is in 2NF.
Artist:

artist id — artist name, date of birth, gender, address

Candidate key, prime attributes = { artist_id }

Non — prime attributes = { artist_name, date_of_birth, gender, address }

All the non—prime attributes are fully dependent on the candidate key. So, it is in 2NF.
Actsin:

movie_id, artist_id — movie_id, artist_id

Candidate key, prime attributes = { artist_id, movie_id }

Non — prime attributes = None

Hence there are no partial dependencies and non-prime attributes it is in 2NF.
MoviePostProduction:

movie_id, building_id — movie id, building_id

Candidate key, prime attributes = { movie_id, building_id }

Non — prime attributes =None

Hence there are no partial dependencies and non-prime attributes it is in 2NF.
Employees:

employee id — employee name, designation, phone number, employee level

Candidate key, prime attributes = { employee _id }
Non — prime attributes ={ employee_name, designation, phone_number, employee_level }

As there is only one candidate key and no partial dependencies on any part of the candidate key,
this relation is already in 2NF.

MovieScriptinventory:

script_inventory id — script_inventory name
Candidate key, prime attributes ={ script_inventory id }
Non — prime attributes =None

Since the given FD has only one attribute on the right-hand side, it is already in 2NF and no
further normalization is needed.

o 3NF:
Movie:
Movie: movie id — title, date of release, duration, script_inventory id, director, in_production
Candidate key, prime attributes = { movie_id }
Non — prime attributes = { in_production }

Movie_id is the super key. There are no transitive dependencies in the relation. Hence, the given
relation is in 3NF.

Songs:

song_id — song_name, Singer_name, movie_id

Candidate key, prime attributes = { song_id }

Non — prime attributes = { song_name, singer_name, movie_id }

Any combination of attributes that includes song_id would be a super key.
Genre:

genre id — genre name

Candidate key, prime attributes = { genre_id }

Non — prime attributes = { genre_name }

Genre_id is the super key. There are no transitive dependencies in the relation. Hence, the given
relation is in 3NF.

Site location:

location id — location_name, address

Candidate key, prime attributes = { location_id }
Non — prime attributes = { location_name, address }

Location_id is the super key. There are no transitive dependencies in the relation. Hence, the
given relation is in 3NF.

Payroll:

payroll id — employee id, hours worked, date, hourly pay

Candidate key, prime attributes = { payroll_id }

Non — prime attributes = { employee_id, hours_worked, date, hourly pay }

Any combination of attributes that includes payroll_id would be a super key.Since there are no
transitive dependencies. Hence, the given relation is in 3NF.

Artist:

artist id — artist name, date of birth, gender, address

Candidate key, prime attributes = { artist_id }

Non — prime attributes = { artist_name, date_of_birth, gender, address }

Any combination of attributes that includes artist_id would be a super key. There are no
transitive dependencies in the relation. Hence, the given relation is in 3NF.

Actsin:

movie_id, artist id — movie id, artist_id

Candidate key, prime attributes = { artist_id, movie_id }
Non — prime attributes = None

Any combination of attributes that includes both artist_id and movie_id would be a superkey
for this relation. There are no transitive dependencies in the relation. Hence, the given relation is
in 3NF.

MoviePostProduction:
movie_id, building_id — movie id, building_id

Candidate key, prime attributes = { movie_id, building_id }

Non — prime attributes =None
The super key is { movie_id, building_id }.

There are no transitive dependencies in the relation. Hence, the given relation is in 3NF.

Employees:

employee id — employee name, designation, phone number, employee level

Candidate key, prime attributes = { employee_id }

Non — prime attributes ={ employee_name, designation, phone_number, employee_level }
This functional dependency is already in 3NF as there are no transitive dependencies.
MovieScriptinventory:

script_inventory id — script_inventory name

Candidate key, prime attributes ={ script_inventory id }

Non — prime attributes ={}

Since there is only one FD it will satisfy the 3NF condition and it is in 3NF.

e BCNEF:
Movie:
Movie: movie_id — title, date_of release, duration, script_inventory_id, director, in_production
Candidate key, prime attributes = { movie_id }
Non — prime attributes = { in_production }

The only candidate key is { movie_id }, and there are no non-trivial dependencies. Therefore, the
relation is in BCNF.

Songs:

song_id — song_name, singer_name, movie_id

Candidate key, prime attributes = { song_id }

Non — prime attributes = { song_name, singer_name, movie_id }

The only candidate key is { song_id }, and there are no non-trivial dependencies. Therefore, the
relation is in BCNF.

Genre:

genre id — genre name

Candidate key, prime attributes = { genre_id }
Non — prime attributes = { genre_name }

The only candidate key is { genre_id }, and there are no non-trivial dependencies. Therefore, the
relation is in BCNF.

Site location:

location_id — location_name, address

Candidate key, prime attributes = { location_id }
Non — prime attributes = { location_name, address }

The only candidate key is { location_id }, and there are no non-trivial dependencies. Therefore,
the relation is in BCNF.

Payroll:

payroll id — employee id, hours worked, date, hourly pay

Candidate key, prime attributes = { payroll_id }

Non — prime attributes = { employee_id, hours_worked, date, hourly pay }

The given relation is not in BCNF. To bring it to BCNF, we need to decompose the relation into
two relations:

e Ri(employee _id, hourly pay)
e R2(payroll_id, employee_id, hours_worked, date)

Each relation has a single determinant for each of its attributes, and the relation satisfies BCNF.
Artist:

artist_id — artist name, date_of birth, gender, address

Candidate key, prime attributes = { artist_id }

Non — prime attributes = { artist_name, date_of birth, gender, address }

Since there is only one candidate key and no functional dependencies other than the trivial ones,
the relation is automatically in BCNF.

Actsin:
movie_id, artist id — movie id, artist_id
Candidate key, prime attributes = { artist_id, movie_id }

Non — prime attributes = None

Since there are no non-prime attributes and every non-trivial functional dependency in the
relation has a candidate key as the determinant, the given relation is in BCNF.

MoviePostProduction:

movie_id, building id — movie id, building id

Candidate key, prime attributes = { movie_id, building_id }

Non — prime attributes =None

Since there are no prime attributes, it is in BCNF.

Employees:

employee id — employee name, designation, phone number, employee level
Candidate key, prime attributes = { employee_id }

Non — prime attributes ={ employee_name, designation, phone_number, employee_level }
It is also in BCNF since the left-hand side (LHS) contains the candidate key.
MovieScriptinventory:

script_inventory id — script_inventory name

Candidate key, prime attributes ={ script_inventory id }

Non — prime attributes ={}

As the given FD has only one candidate key it is the super key, so it is in BCNF.

Therefore, all the Functional dependencies are in BCNF.

Dependency Preserving and Lossless Join:

Movie:

Movie: movie_id — title, date_of _release, duration, script_inventory_id, director, in_production
Here we have Movie table in which we have attributes of movie_script_invetory table.
Comparing both tables to find whether they have common attributes and dependencies.

Movie:

e movie id — title

e movie id — date of release

e movie id — duration

e movie id — script_inventory id
e movie id — director

e movie id — in_production
Script_Inventory:
e script_inventory id — {}

The common attribute between the two tables is "script_inventory_id". However, since the
"script_inventory_id" attribute is a foreign key in the "Movie" table.

Therefore, based on the information given, we can conclude that the join between the "Movie"
and "Script_Inventory" tables is both dependency preserving and lossless.

Songs:
song_id — song_name, singer name, movie id

If the "movie_id" attribute in the "song" table refers to a separate table containing information
about the movies that the songs belong to, we have the following dependencies in each table:

Song:

e song id — song name
e song_id — singer name
e song id — movie id

Movie:
e movie_id — {}
The common attribute between the two tables is "movie_id".

For example, if a movie has two songs with different song_ids but the same singer and song
name, then the join would produce an additional tuple that combines the information for those
two songs.

Therefore, we can conclude that the join between the "Song" and "Movie" tables is dependency
preserving and lossless join.

Genre:

e genre id — genre name
There are no other tables to join with, so there are no common attributes to consider.
Based on the above scenario this is dependency preserving,

Since the dependency is a simple one-to-one mapping between genre_id and genre_name, there
are no redundant tuples in the table that can be eliminated.

Therefore, we can conclude that the table is lossless.

Site location:
location_id — location name, address
Location:

e Jlocation_id — location name
e Jocation id — address

There are no other tables to join with, so there are no common attributes to consider.Based on
these dependencies, we can conclude that the table is dependency preserving, as the
dependencies are trivially preserved by any join operation.

To determine if the table is lossless, we need to check if the table if there are any redundant
tuples, as there are no redundant tuples the join is lossless.

Payroll:

payroll id — employee_id, hours worked, date, hourly pay
These are the individual dependencies.

Payroll:

e payroll id — employee id
e payroll id — hours worked
e payroll id — date

e payroll id — hourly pay

From the above dependencies we conclude that it is dependency preserving.

Since payroll_id is the primary key of the table, there are no redundant tuples in the table that
can be eliminated without losing any information. Therefore, we can conclude that the table is
lossless.

The "Payroll"” table is both dependency preserving and lossless.
Artist:
artist_id — artist name, date_of birth, gender, address

The only table we have is the one containing the information about artists. In this case, we can
identify the following dependency in the table:

Artists:

e artist id — artist name
e artist id — date of birth

e artist id — gender
e artist id — address

Based on these dependencies, we can conclude that the table is dependency preserving, as all of
the dependencies are preserved by any join operation.

The "Aurtists™ table is lossless, since there are no redundant tuples that can be eliminated without
losing any information.

Actsin:
movie_id, artist id — movie id, artist id

The combination of values in movie_id and artist_id uniquely determines the values of movie_id
and artist_id. This dependency is trivially true, as the right-hand side of the dependency is simply
equal to the left-hand side.

The join of the two tables on the common attribute movie_id and artist_id will result in a table
with the same attributes as the original tables.

Therefore, the join between these two tables is both dependency preserving and lossless.

MoviePostProduction:
movie_id, building_id — movie id, building_id

The movie_id and building_id uniquely determine the values of movie_id and building_id. This
dependency is trivially true.

Both the primary keys movie_id and building _id, the join will result in the same table without
any information loss.

Hence, the MoviePostProduction is lossless and dependency preserving.
Employees:

employee_id — employee name, designation, phone number, employee_level

Employees:

e cmployee id — employee name
e employee id — designation

e cmployee id — phone number
e cmployee id — employee level

Based on these dependencies, we can conclude that the table is dependency preserving, as all of
the dependencies are preserved by any join operation.

The "Employees” table is lossless, since there are no redundant tuples that can be eliminated
without losing any information.

MovieScriptinventory:
script_inventory id — script_inventory name
Since we have no other table, the dependency is preserved.

Since the script_inventory_id is a primary key, there can be no duplicate values of
script_inventory_id in the table. Therefore, there can be no redundant tuples in the table, and the
table is lossless.

New tables:

Movie:
CREATE TABLE Movie (
movie_id INT PRIMARY KEY,
title VARCHAR?2(100) NOT NULL,
date_of release DATE NOT NULL,
duration INT NOT NULL,

script_inventory_id INT REFERENCES MovieScriptinventory(script_inventory_id) NOT
NULL,

director VARCHAR2(100) NOT NULL,
in_production CHAR(1) NOT NULL

);

MovieRating:
CREATE TABLE MovieRating (
movie_id INT PRIMARY KEY REFERENCES Movie(movie_id),
avg_rating NUMBER(3, 1) NOT NULL
);
Songs:
CREATE TABLE Songs (
song_id INT PRIMARY KEY,

song_name VARCHAR2(100) NOT NULL,
singer_name VARCHAR2(100) NOT NULL,
movie_id INT REFERENCES Movie(movie_id) NOT NULL
);

Genre:

CREATE TABLE Genre (

genre_id INT PRIMARY KEY,

genre_name VARCHAR2(100) NOT NULL

);

MovieGenre:

CREATE TABLE MovieGenre (

movie_id INT REFERENCES Movie(movie_id),
genre_id INT REFERENCES Genre(genre_id),
PRIMARY KEY (movie_id, genre_id)

);

SiteLocation:
CREATE TABLE SiteLocation (
location_id INT PRIMARY KEY,
location_name VARCHAR2(100) NOT NULL,
address VARCHAR2(200) NOT NULL

);

MovieLocation:

CREATE TABLE MovieLocation (

location_id INT REFERENCES SiteLocation(location_id),
movie_id INT REFERENCES Movie(movie_id),
PRIMARY KEY (location_id,movie_id)

Building:

CREATE TABLE Building (

building_id INT PRIMARY KEY,
building_name VARCHAR2(100) NOT NULL

);

Employees:

CREATE TABLE Employees (
employee_id INT PRIMARY KEY,
hourly _pay NUMBER(6, 2) NOT NULL,
UNIQUE(phone_number)

);

EmployeeDetails:

CREATE TABLE EmployeeDetails (

employee_id INT REFERENCES Employees(employee_id),
employee_name VARCHAR2(100) NOT NULL,
designation VARCHAR2(100) NOT NULL,
employee_level VARCHAR2(100) NOT NULL,
PRIMARY KEY (employee_id)

);

Manages:

CREATE TABLE Manages (

employee_id INT REFERENCES Employees(employee _id),
location_id INT REFERENCES SiteLocation(location_id),

PRIMARY KEY (employee_id, location_id)
);

Payroll:

CREATE TABLE Payroll (

payroll_id INT PRIMARY KEY,

employee_id INT REFERENCES Employees(employee_id) NOT NULL,
hours_worked NUMBER(3, 1) NOT NULL,

date DATE NOT NULL

);

Sponsoring_Company:

CREATE TABLE SponsoringCompany (
company_id INT PRIMARY KEY,
company_name VARCHAR2(100) NOT NULL

);

CompanyMovies:

CREATE TABLE CompanyMovies (

company_id INT REFERENCES SponsoringCompany(company_id),
movie_id INT REFERENCES Movie(movie_id),

PRIMARY KEY (company_id, movie_id)

);

getsPaidBy:

CREATE TABLE getsPaidBy (

artist_id INT PRIMARY KEY REFERENCES Avtist(artist_id),

company_id INT REFERENCES SponsoringCompany(company_id) NOT NULL

Produces:

CREATE TABLE Produces (

company_id INT REFERENCES SponsoringCompany(company_id),
movie_id INT REFERENCES Movie(movie_id),

PRIMARY KEY (company _id, movie_id)

);

ArtistDetails:

CREATE TABLE ArtistDetails (

artist_id INT REFERENCES Artist(artist_id),
date_of birth DATE NOT NULL,

gender CHAR(1) NOT NULL,

address VARCHAR2(200) NOT NULL,
PRIMARY KEY (artist_id)

);

Actsin:

CREATE TABLE Actsln (

movie_id INT REFERENCES Movie(movie_id),
artist_id INT REFERENCES Artist(artist_id),
PRIMARY KEY (movie_id, artist_id)

);

Rating:
CREATE TABLE Rating (
rating_id INT PRIMARY KEY,

movie_id INT REFERENCES Movie(movie_id) NOT NULL,
rating NUMBER(1, 1) NOT NULL

);

PostProductionDoneln:

CREATE TABLE PostProductionDoneln (

movie_id INT REFERENCES Movie(movie_id),
building_id INT REFERENCES Building(building_id),
PRIMARY KEY (movie_id, building_id)

);

BuildingPurpose:

CREATE TABLE BuildingPurpose (

building_id INT REFERENCES Building(building_id),
purpose VARCHAR2(100) NOT NULL,

PRIMARY KEY (building_id, purpose)

);

BuildingLocation:

CREATE TABLE BuildingLocation (

building_id INT REFERENCES Building(building_id),
location_id INT REFERENCES SiteLocation(location_id),
PRIMARY KEY (building_id, location_id)

);

The above tables satisfy the BCNF and 3NF requirements and all functional dependencies.

In summary, we identified 21 non-trivial functional dependencies among the original tables and
normalized them into 22 tables that satisfy BCNF and 3NF requirements.

The final Database:
Movie_Script_Inventory:

CREATE TABLE MovieScriptinventory (script_inventory id INT PRIMARY KEY,
script_inventory_name VARCHAR(255) NOT NULL);

& saLPus X + o~

SQL*Plus: Release 21.0.0.0.0 - Production on Sun Mar 5 17:08:17 2023
Version 21.3.0.0.0

Copyright (c) 1982, 2021, Oracle. All rights reserved.

Enter user-name: system
Enter password:
Last Successful login time: Sun Mar 05 2023 17:07:11 -06:00

Connected to:
Oracle Database 21c Express Edition Release 21.0.0.0.0 - Production
Version 21.3.0.0.0

SQL> DROP TABLE MovieScriptInventory CASCADE CONSTRAINTS;
Table dropped.

sQL>

SQL> rem | Create MovieScriptInventory Table

sQL>

SQL>

SQL> CREATE TABLE MovieScriptInventory (
script_inventory_id INT PRIMARY KEY,
script_inventory_name VARCHAR(255) NOT NULL

);

Table created.

sQL>

sQL Plus x o

SQL> select * from MovieScriptInventory;

SCRIPT_INVENTORY_ID

The Shawshank Inventory

2
The Avengers Inventory

3
The Dark Knight Inventory

SCRIPT_INVENTORY_ID

Fiction Inventory

5
The Lord of the Rings Inventory

6
Forrest Inventory
SCRIPT_INVENTORY_ID

SCRIPT_INVENTORY_NAME

Movies:

CREATE TABLE Movie (
movie_id INT PRIMARY KEY,
title VARCHAR2(100) NOT NULL,
date_of release DATE NOT NULL,
duration INT NOT NULL,

script_inventory_id INT REFERENCES MovieScriptinventory(script_inventory_id) NOT
NULL,

director VARCHAR2(100) NOT NULL,
in_production CHAR(1) NOT NULL
);

[« R ST

criptInventor ript_inventory_ NOT MULL,

-l

CREATE TABLE Movie {

Movie Rating:

CREATE TABLE MovieRating (movie_id INT PRIMARY KEY REFERENCES
Movie(movie_id), avg_rating NUMBER(3, 1) NOT NULL);

CREATE TAEBLE MowvieRating

movie id INT PRI} " REFERENCES Movie(movie id),
ating NUMBER(3, 1) NOT NULL

* from MovieRating;

AVG_RATING

Songs:

CREATE TABLE Songs (

song id INT NOT NULL,

song name VARCHAR(255) NOT NULL,

singer name VARCHAR(255) NOT NULL,

movie id INT NOT NULL,

PRIMARY KEY (song id),

FOREIGN KEY (movie id) REFERENCES Movie(movie_id)

);

SQL> DROP TABLE Songs CASCADE CONSTRAINTS

Table dropped

y NOT NULL,

5 ie_:

6 PRIMARY HEY

7 FOREIGN K) REFERENCES Movie(movie_id)
8);

Table created.

sQL> |

sQL Plus

SQL> select * from Songs

SONG_ID

Shape of You
Ed Sheeran
1

SONG_ID

Billie Jean
Michael Jackson
2

SONG_ID

SINGER_NAME

Genre:

CREATE TABLE Genre (
genre id INT NOT NULL,
genre_ name VARCHAR(255) NOT NULL,

PRIMARY KEY (genre id)
);

SQL> DROP TABLE Genre CASCADE CONSTRAINTS;
Table dropped.
Genre |

) NOT NULL,

SQL Plus

SQL> select * from Genre

Comedy

GENRE_ID

Romance
Thriller
6

Adventure

GENRE_ID

Tagged with:

CREATE TABLE TaggedWith (

movie id INT NOT NULL,

genre id INT NOT NULL,

PRIMARY KEY (movie id, genre id),

FOREIGN KEY (movie id) REFERENCES Movie(movie_id),
FOREIGN KEY (genre id) REFERENCES Genre(genre id)

);

SQL> DROP TABLE TaggedWith CASCADE CONSTRAINTS;
Table dropped

te Taggedwith Table

LE Taggeduith (
INT NOT NULL,

INT NOT

sQL> select = from Taggedwith;

MOVIE_ID GENRE_ID

1e
1e

22 rows selected

Sitelocation:

CREATE TABLE SiteLocation (

location id INT NOT NULL,

location name VARCHAR(255) NOT NULL,
address VARCHAR(255) NOT NULL,
PRIMARY KEY (location_id)

);

SQL> DROP TABLE Sitelocation CASCADE CONSTRAINTS;

Table dropped.

Table created.

sQL> |

sQL Plus

SQL> select * from Building;

BUILDING_ID

BUILDING_NAME

MGM Studios
studio

2
Sony Pictures
studio

BUILDING_ID

BUILDING_NAME

Pinewood Studios
studio

y
Warner Bros. Studios

BUILDING_ID

Building:

CREATE TABLE Building (building_id INT PRIMARY KEY, building_name
VARCHAR2(100) NOT NULL);

> CREATE TABLE Building
2 building_id IN
E _name VARCHARZ() MNOT NULL

buildi
4 Vi
EATE TABLE Building (

CR

SQL> select * from Building;

BEUILDING_ID

Empire State Building

Burj Khalifa

Taipei 101

BUILDING_ID

The Shard
CHN Tower

BEULLDING_ID

onas Towers

Eiffel Tower

ShotAt:

CREATE TABLE ShotAt (

location_id INT NOT NULL,

movie_id INT NOT NULL,

PRIMARY KEY (location_id, movie_id),

FOREIGN KEY (location_id) REFERENCES SiteLocation(location_id),
FOREIGN KEY (movie_id) REFERENCES Movie(movie_id)

);

SQL> DROP TABLE ShotAt CASCADE CONSTRAINTS;

Table dropped.

SQL> rem - e e e e}
SQL> rem | Create ShotAt Table
sQL> rem +—m"m"m—H——"——"""——"——"——————————————————————————————————————+%
SQL>
SQL> CREATE TABLE ShotAt (
2 location_id INT NOT NULL,

movie_id INT NOT NULL,

PRIMARY KEY (location_id, movie_id),

FOREIGN KEY (location_id) REFERENCES Sitelocation(lecation_id)

FOREIGN KEY (movie_id) REFERENCES Movie(movie_id)

)

Table created.

SQL>

SQL> select = from ShotAt;

MOVIE_ID

21 rows selected.

sQL>

PostProductionDoneln:

CREATE TABLE PostProductionDoneln (

movie id INT NOT NULL,

building_id INT NOT NULL,

PRIMARY KEY (movie_id, building_id),

FOREIGN KEY (movie id) REFERENCES Movie(movie_id),
FOREIGN KEY (building_id) REFERENCES Building(building_id)

);
SQL> DROP TABLE PostProductionDoneIn CASCADE CONSTRAINTS;
Table dropped.

sQL>
SQL> rem | Create PostProdu
SQL>
sQL>
SQL> CREATE TABLE PostProductionDoneIn (
movie_id INT NOT NULL,
building_id INT NOT NULL,
PRIMARY KEY (movie_id, building_id),
FOREIGN KEY (movie_id) REFERENCES Movie(movie_id),
FOREIGN KEY (building_id) REFERENCES Building(building_id)

E

Table created.

SQL> |

SQL> select * from PostProductionDoneln;

MOVIE_ID BUILDING_ID

26 rows selected.

sQL>

Employees:

CREATE TABLE Employees (

employee_id INT NOT NULL,

employee_name VARCHAR(255) NOT NULL,
designation VARCHAR(255) NOT NULL,
phone_number VARCHAR(10) NOT NULL UNIQUE,
PRIMARY KEY (employee id),

CONSTRAINT designatoin_constraint_violated CHECK (

designation IN (‘choreographers', 'security’,'sound engineer', 'makeup artist', 'electrician’,
'Janitor','manager’)));

SQL> DROP TABLE Employees CASCADE CONSTRAINTS;
Table dropped.

SQL> rem + —--

SQL> CREATE TABLE Employees (
employee_id INT NOT NULL,
employee_name VARCHAR(255) NOT NULL,
designation VARCHAR(2
phone_number VARCHA NOT NULL UNIQUE,
PRIMARY WEY (employee_id),
CONSTRAINT designatoin_constraint_violated CHECK (
designation IN (
‘choreographer',
'security’',
'sound engineer',
‘makeup artist',
‘electrician',
'janiter',
‘manager’

b)
b

Table created

SQL>

SQL Plus X W

SQL> select * from Employees;

EMPLOYEE_ID

John Doe
electrician
1234567896

EMPLOYEE_ID

Jane Smith
makeup artist
2345678981

EMPLOYEE_ID

DESIGNATION

Payroll:

CREATE TABLE Payroll (

payroll_id INT NOT NULL,

salary FLOAT NOT NULL,

employee_id INT NOT NULL,

hours_worked FLOAT NOT NULL,

PRIMARY KEY (payroll_id),

FOREIGN KEY (employee_id) REFERENCES Employees(employee _id),
CONSTRAINT salary_constraint_violated CHECK (salary > 0),

CONSTRAINT hours_constraint_violated CHECK (hours_worked > 0 and hours_worked <=
40)

);

SQL> DROP TABLE Payroll CA

Table dropped

rem | Create P
rem + —

CREATE TABLE Pay

> @ and hour:

5708
4368

20 rows selected.

sQL>
Sponsoring company

CREATE TABLE SponsoringCompany (

company id INT NOT NULL,

company_name VARCHAR(255) NOT NULL UNIQUE,
PRIMARY KEY (company id)

);

SQL> DROP TABLE Sponsorin mpany CASCADE CONSTRAINTS;
Table dropped.

sQL>
SQL>
SQL> =
SQL>
SQL> CREATE TABLE SponsoringCompany (
2 company_id INT NOT NULL,
3 company_name VARCHAR(255) NOT NULL UNIQUE,
4 PRIMARY KEY (company_id)
5);

Table created.

SQL>

E saLplus x G

select * from SponsoringCompany ;

COMPANY_ID

Universal Pictures

.

Warner Bros. Pictures

3
walt Disney Pictures

COMPANY_ID

Paramount Pictures

20th Century Fox

6
Sony Pictures

Manages:

CREATE TABLE Manages (

employee id INT NOT NULL,

location_id INT NOT NULL,

PRIMARY KEY (employee id, location_id),

FOREIGN KEY (employee id) REFERENCES Employees(employee id),
FOREIGN KEY (location_id) REFERENCES SiteLocation(location_id)

);

T

SQL> select * from Manages;

EMPLOYEE_ID LOCATION_ID

102
183
le4
185
106
187
188
189
118
181

EMPLOYEE_ID

183
184
185
106
187
188
109
11e

20 rows selected.

sQL>

Artist:

CREATE TABLE Artist (

artist id INT PRIMARY KEY,

artist name VARCHAR(255) NOT NULL,

date of birth DATE NOT NULL,

gender VARCHAR(1) NOT NULL,

CONSTRAINT gender constraint violated CHECK (gender in (‘M', 'F', 'T"))

);

SQL> DROP TABLE Artist CASCADE CONSTRAINTS;
Table dropped

SQL> rem + -

SQL> CREATE TABLE Artist
2 artist_id INT PRIM,
artist_name VARCHA
date_of_birth DATE
gender VARCHAR(1) NOT NULL,

CONSTRAINT gender_constraint_violated CHECK (gender in ('M' & ‘F', *T*
alf

Table created

sQL>

E saLplus

SQL> select = from Artist;

ARTIST_ID

Tom Hanks
89-JUL-56 M

Denzel washington
28-DEC-54 M

u
Scarlett Johansson

DATE_OF_E G

GetsPaidBy

CREATE TABLE getsPaidBy (

artist id INT NOT NULL,

company_id INT NOT NULL,

PRIMARY KEY (artist_id, company _id),

FOREIGN KEY (artist_id) REFERENCES Artist(artist_id),

FOREIGN KEY (company_id) REFERENCES SponsoringCompany(company _id)
);

Table dropped.

SQL> rem # -
SQL> rem | C
SQL> rem + -
sQL>
SQL> CREATE TABLE getsPaidBy (
2 artist_id INT NOT NULL,
3 company_id INT NOT NULL,
PRIMARY KEY (artist_id, company_id),
FOREIGN MEV (artist_id) REFERENCES Artist(artist_id)
FOREIGN KEY (company_id) REFERENCES SponsoringCompany(company_id)
)i

Table created.

sQL>

SQL> select * from getsPaidBy;

ARTIST_ID COMPANY_ID

u
5
u

EEWLWUWWNRNNKR

NHEWNKR

ARTIST_ID

15 rows selected.

SQL>

Produces:

CREATE TABLE Produces (

company id INT NOT NULL,

movie id INT NOT NULL,

PRIMARY KEY (company id, movie id),

FOREIGN KEY (company_id) REFERENCES SponsoringCompany(company _id),
FOREIGN KEY (movie id) REFERENCES Movie(movie id)

);

SQL> DROP TABLE Produces CASCADE CONSTRAINTS;
Table dropped.

SQL> rem +

SQL> rem | Create Produces Table

SQL> rem +

SQL>

SQL> CREATE TABLE Produces C

2 company_id INT NOT NULL,
movie_id INT NOT NULL,
PRIMARY KEY (company_id, movie_id),
FOREIGN KEY (company_id) REFERENCES SponsoringCompany(company_id),
FOREIGN KEY (movie_id) REFERENCES Movie(movie_id)
)i

Table created.

> select = from Produces;

20 rows selected.

sQL> |

Actsln:

CREATE TABLE Actsln (

movie id INT NOT NULL,

artist_id INT NOT NULL,

PRIMARY KEY (movie _id, artist_id),

FOREIGN KEY (movie id) REFERENCES Movie(movie_id),
FOREIGN KEY (artist_id) REFERENCES Artist(artist_id)

);

SQL> DROP TABLE ActsIn CASCADE CONSTRAINTS;

Table dropped.

Lo
SSL> CREATE TABLE ActsIn (
movie_id INT NOT NULL,
artist_id INT NOT NULL,
PRIMARY KEY (movie_id, artist_id),
FOREIGN KEY (movie_id) REFERENCES Movie(movie_id),
FOREIGN KEY (artist_id) REFERENCES Artist(artist_id)

Table created

SQL>

5QL> select » from ActsIn;

MOVIE_ID ARTIST_ID

20 rows selected.

sQL> |

Individual Contribution:

Identified Functional Dependencies in Movie and Songs table.

Designed Movie and Songs tables in 2NF.

Modified Movie and Songs tables in 3NF.

Modified Movie and Songs tables to BCNF.

Found Dependency preserving and loss less join in Movie and Songs tables.

Created table for Movie and Songs.

